L(s) = 1 | + (0.5 − 0.866i)2-s + (−1 + 1.73i)3-s + (−0.499 − 0.866i)4-s − 5-s + (0.999 + 1.73i)6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (−1 + 1.73i)11-s + 1.99·12-s + (3.5 + 0.866i)13-s + (1 − 1.73i)15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s − 0.999·18-s + (−2 − 3.46i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.577 + 0.999i)3-s + (−0.249 − 0.433i)4-s − 0.447·5-s + (0.408 + 0.707i)6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.158 + 0.273i)10-s + (−0.301 + 0.522i)11-s + 0.577·12-s + (0.970 + 0.240i)13-s + (0.258 − 0.447i)15-s + (−0.125 + 0.216i)16-s + (0.121 + 0.210i)17-s − 0.235·18-s + (−0.458 − 0.794i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4491209674\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4491209674\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-3.5 - 0.866i)T \) |
good | 3 | \( 1 + (1 - 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + T + 5T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2 + 3.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 + 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 + (3.5 - 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.5 - 6.06i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1 - 1.73i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5 - 8.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (8 + 13.8i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3T + 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + 14T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12842709470517101469341650647, −9.536463339085512807806847576434, −8.580682746550486132331902009565, −7.64144302137958428729372525222, −6.44765613366715271895548277281, −5.59723642764747631880496381164, −4.66040623233785798307142382233, −4.13190480851434408048630445343, −3.18421643962415879015537718316, −1.73454836228826189828379742647,
0.17865777714988229945583735707, 1.68259153913701527687867897105, 3.31699995959704417592949731884, 4.14633558772711405987839317404, 5.53300937685864928819558553193, 5.94918098341926586812645733292, 6.85994492753932318680854354558, 7.53012921509658335110301234581, 8.281251386200839132678898002142, 8.991161347632169865956656976448