L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1 + 1.73i)5-s + 0.999·8-s + (1.5 + 2.59i)9-s + (0.999 − 1.73i)10-s + (−2 + 3.46i)11-s + 13-s + (−0.5 − 0.866i)16-s + (−3 + 5.19i)17-s + (1.5 − 2.59i)18-s − 1.99·20-s + 3.99·22-s + (−4 − 6.92i)23-s + (0.500 − 0.866i)25-s + (−0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.447 + 0.774i)5-s + 0.353·8-s + (0.5 + 0.866i)9-s + (0.316 − 0.547i)10-s + (−0.603 + 1.04i)11-s + 0.277·13-s + (−0.125 − 0.216i)16-s + (−0.727 + 1.26i)17-s + (0.353 − 0.612i)18-s − 0.447·20-s + 0.852·22-s + (−0.834 − 1.44i)23-s + (0.100 − 0.173i)25-s + (−0.0980 − 0.169i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9257463022\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9257463022\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4 + 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 10T + 29T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3 + 5.19i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (4 + 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + (-1 + 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-9 - 15.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27218349280382840006829465646, −9.230312415844019715053843195373, −8.356034705758838103536782779553, −7.50008256785962660976668476360, −6.80379929589147692182202284651, −5.74189010230422693882198013864, −4.62064785055705089261799729370, −3.77700552042656540949213315800, −2.33090279808859789338708226288, −1.91724775583289348495911176473,
0.41836805644197940100525240865, 1.72209715873392458048317789276, 3.33654737723789333077148364178, 4.41815314042540122562323681403, 5.55152495605768014002451906284, 5.91068909008317905641105555610, 7.09358335571750465706097185668, 7.77184540525070484933981844702, 8.752067816849065704454512118625, 9.418081354915025642783831067549