Properties

Label 2-1274-13.12-c1-0-5
Degree $2$
Conductor $1274$
Sign $-0.980 + 0.196i$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 2.82·3-s − 4-s + 1.41i·5-s − 2.82i·6-s i·8-s + 5.00·9-s − 1.41·10-s + 2.82·12-s + (0.707 + 3.53i)13-s − 4.00i·15-s + 16-s − 1.41·17-s + 5.00i·18-s + 2.82i·19-s − 1.41i·20-s + ⋯
L(s)  = 1  + 0.707i·2-s − 1.63·3-s − 0.5·4-s + 0.632i·5-s − 1.15i·6-s − 0.353i·8-s + 1.66·9-s − 0.447·10-s + 0.816·12-s + (0.196 + 0.980i)13-s − 1.03i·15-s + 0.250·16-s − 0.342·17-s + 1.17i·18-s + 0.648i·19-s − 0.316i·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $-0.980 + 0.196i$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1274} (883, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ -0.980 + 0.196i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5409145041\)
\(L(\frac12)\) \(\approx\) \(0.5409145041\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
7 \( 1 \)
13 \( 1 + (-0.707 - 3.53i)T \)
good3 \( 1 + 2.82T + 3T^{2} \)
5 \( 1 - 1.41iT - 5T^{2} \)
11 \( 1 - 11T^{2} \)
17 \( 1 + 1.41T + 17T^{2} \)
19 \( 1 - 2.82iT - 19T^{2} \)
23 \( 1 - 8T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 10iT - 37T^{2} \)
41 \( 1 - 9.89iT - 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + 11.3iT - 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 - 2.82iT - 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 + 12iT - 67T^{2} \)
71 \( 1 - 8iT - 71T^{2} \)
73 \( 1 + 12.7iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 2.82iT - 83T^{2} \)
89 \( 1 - 12.7iT - 89T^{2} \)
97 \( 1 + 4.24iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23623678925172220789277546047, −9.377071705500032244570525865814, −8.379555242255389438452620436069, −7.23878262718331290824837497453, −6.57418160590708023108157359047, −6.25484721322355110924859261719, −5.06807163456452055141954137976, −4.61554347102087897554006756145, −3.26326268199755235476918631218, −1.36008864948723964142206053887, 0.34025819112147978708959259724, 1.29260799294295202844084477994, 2.93769580015295571114976294462, 4.28573809724012797728313963979, 5.07565590706356663347037242251, 5.56559789247720039262800349742, 6.60883728236905342636592464929, 7.49374762611980352894078129789, 8.713264299919191245312360289561, 9.350022318897502030482759183425

Graph of the $Z$-function along the critical line