Properties

Label 8-126e4-1.1-c5e4-0-4
Degree $8$
Conductor $252047376$
Sign $1$
Analytic cond. $166772.$
Root an. cond. $4.49537$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 16·4-s − 42·5-s + 232·7-s + 128·8-s + 336·10-s − 294·11-s − 280·13-s − 1.85e3·14-s − 1.02e3·16-s + 1.30e3·17-s + 1.44e3·19-s − 672·20-s + 2.35e3·22-s + 2.64e3·23-s + 6.69e3·25-s + 2.24e3·26-s + 3.71e3·28-s − 3.33e3·29-s + 1.47e4·31-s + 2.04e3·32-s − 1.04e4·34-s − 9.74e3·35-s − 5.18e3·37-s − 1.15e4·38-s − 5.37e3·40-s + 1.02e4·41-s + ⋯
L(s)  = 1  − 1.41·2-s + 1/2·4-s − 0.751·5-s + 1.78·7-s + 0.707·8-s + 1.06·10-s − 0.732·11-s − 0.459·13-s − 2.53·14-s − 16-s + 1.09·17-s + 0.916·19-s − 0.375·20-s + 1.03·22-s + 1.04·23-s + 2.14·25-s + 0.649·26-s + 0.894·28-s − 0.736·29-s + 2.76·31-s + 0.353·32-s − 1.54·34-s − 1.34·35-s − 0.622·37-s − 1.29·38-s − 0.531·40-s + 0.952·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(166772.\)
Root analytic conductor: \(4.49537\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(2.460031179\)
\(L(\frac12)\) \(\approx\) \(2.460031179\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
3 \( 1 \)
7$C_2^2$ \( 1 - 232 T + 4050 p T^{2} - 232 p^{5} T^{3} + p^{10} T^{4} \)
good5$C_2^2$ \( ( 1 + 21 T - 2684 T^{2} + 21 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 + 294 T - 27955 T^{2} - 61067034 T^{3} - 26772727956 T^{4} - 61067034 p^{5} T^{5} - 27955 p^{10} T^{6} + 294 p^{15} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 + 140 T + 728766 T^{2} + 140 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 1302 T - 82343 p T^{2} - 332427942 T^{3} + 5156300484948 T^{4} - 332427942 p^{5} T^{5} - 82343 p^{11} T^{6} - 1302 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 - 1442 T - 2040155 T^{2} + 1200723118 T^{3} + 5690659412524 T^{4} + 1200723118 p^{5} T^{5} - 2040155 p^{10} T^{6} - 1442 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 - 2646 T - 1888699 T^{2} + 10538147466 T^{3} - 7457015740812 T^{4} + 10538147466 p^{5} T^{5} - 1888699 p^{10} T^{6} - 2646 p^{15} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 + 1668 T + 40800574 T^{2} + 1668 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 14798 T + 109902301 T^{2} - 766835334398 T^{3} + 4809257025922804 T^{4} - 766835334398 p^{5} T^{5} + 109902301 p^{10} T^{6} - 14798 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 + 5182 T - 44248391 T^{2} - 350232719618 T^{3} - 1615260813094292 T^{4} - 350232719618 p^{5} T^{5} - 44248391 p^{10} T^{6} + 5182 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 - 5124 T + 23950966 T^{2} - 5124 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 4520 T + 240418566 T^{2} + 4520 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 14994 T - 202236067 T^{2} - 474318861534 T^{3} + 78216430143556308 T^{4} - 474318861534 p^{5} T^{5} - 202236067 p^{10} T^{6} + 14994 p^{15} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 - 24006 T - 359228239 T^{2} - 2379601687734 T^{3} + 459302171099340828 T^{4} - 2379601687734 p^{5} T^{5} - 359228239 p^{10} T^{6} - 24006 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 - 38850 T + 184375157 T^{2} + 4075413756750 T^{3} + 165317378144690748 T^{4} + 4075413756750 p^{5} T^{5} + 184375157 p^{10} T^{6} - 38850 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 23618 T - 1176467639 T^{2} - 1064816608898 T^{3} + 1823251555390845244 T^{4} - 1064816608898 p^{5} T^{5} - 1176467639 p^{10} T^{6} - 23618 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 + 32002 T - 115710491 T^{2} - 49936295831438 T^{3} - 1906306940850092852 T^{4} - 49936295831438 p^{5} T^{5} - 115710491 p^{10} T^{6} + 32002 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 - 89376 T + 5425689166 T^{2} - 89376 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 47138 T - 2210081903 T^{2} - 13478157074018 T^{3} + 10739298264608894068 T^{4} - 13478157074018 p^{5} T^{5} - 2210081903 p^{10} T^{6} - 47138 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 - 40970 T - 4344609803 T^{2} + 5365517032150 T^{3} + 21645103291094327908 T^{4} + 5365517032150 p^{5} T^{5} - 4344609803 p^{10} T^{6} - 40970 p^{15} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 + 68376 T + 8908447510 T^{2} + 68376 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 123102 T + 1602880625 T^{2} - 293364730856862 T^{3} + 67832483053507925844 T^{4} - 293364730856862 p^{5} T^{5} + 1602880625 p^{10} T^{6} - 123102 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 + 43652 T + 8867162790 T^{2} + 43652 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.867217893915688254443765602020, −8.399701420320496948149062114556, −8.207198148864960402128157110838, −8.198957302485618541872249781779, −7.973804207492514055535464369336, −7.43213338452289223151290801448, −7.28074575033176636893064079065, −7.20987792661160861439288851240, −6.54790667449985135450657457428, −6.51948293076227694009745800573, −5.82535911547657724498657723889, −5.27632413898421810313631101931, −5.14312940579372463516740775049, −4.92800174641073556046749359298, −4.77223721542157167086040125521, −4.28192747179243006614762398796, −3.59735549302612112295742724321, −3.59049131416653054527825690793, −2.86141017299678497553551038365, −2.47661869853269336639165227664, −2.16721153488608755526822377879, −1.36848485591773906664519210501, −1.04840464097033870360824489666, −0.846697755182164082235990189658, −0.43533595456607903536707736780, 0.43533595456607903536707736780, 0.846697755182164082235990189658, 1.04840464097033870360824489666, 1.36848485591773906664519210501, 2.16721153488608755526822377879, 2.47661869853269336639165227664, 2.86141017299678497553551038365, 3.59049131416653054527825690793, 3.59735549302612112295742724321, 4.28192747179243006614762398796, 4.77223721542157167086040125521, 4.92800174641073556046749359298, 5.14312940579372463516740775049, 5.27632413898421810313631101931, 5.82535911547657724498657723889, 6.51948293076227694009745800573, 6.54790667449985135450657457428, 7.20987792661160861439288851240, 7.28074575033176636893064079065, 7.43213338452289223151290801448, 7.973804207492514055535464369336, 8.198957302485618541872249781779, 8.207198148864960402128157110838, 8.399701420320496948149062114556, 8.867217893915688254443765602020

Graph of the $Z$-function along the critical line