L(s) = 1 | + 1.41i·2-s + (−0.677 − 2.92i)3-s − 2.00·4-s + (−5.54 + 3.20i)5-s + (4.13 − 0.958i)6-s + (4.41 + 5.43i)7-s − 2.82i·8-s + (−8.08 + 3.96i)9-s + (−4.52 − 7.84i)10-s + (−16.5 − 9.53i)11-s + (1.35 + 5.84i)12-s + (−11.8 + 20.4i)13-s + (−7.68 + 6.24i)14-s + (13.1 + 14.0i)15-s + 4.00·16-s + (−4.77 + 2.75i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.225 − 0.974i)3-s − 0.500·4-s + (−1.10 + 0.640i)5-s + (0.688 − 0.159i)6-s + (0.630 + 0.775i)7-s − 0.353i·8-s + (−0.897 + 0.440i)9-s + (−0.452 − 0.784i)10-s + (−1.50 − 0.867i)11-s + (0.112 + 0.487i)12-s + (−0.909 + 1.57i)13-s + (−0.548 + 0.446i)14-s + (0.874 + 0.935i)15-s + 0.250·16-s + (−0.280 + 0.162i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 - 0.193i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.981 - 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0341511 + 0.349894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0341511 + 0.349894i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 + (0.677 + 2.92i)T \) |
| 7 | \( 1 + (-4.41 - 5.43i)T \) |
good | 5 | \( 1 + (5.54 - 3.20i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (16.5 + 9.53i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (11.8 - 20.4i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + (4.77 - 2.75i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-2.39 + 4.14i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-6.64 + 3.83i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-11.7 + 6.79i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 - 13.5T + 961T^{2} \) |
| 37 | \( 1 + (-31.7 + 54.9i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (32.6 + 18.8i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (3.41 + 5.91i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 - 83.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (25.8 - 14.9i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 - 28.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 86.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + 64.1T + 4.48e3T^{2} \) |
| 71 | \( 1 - 53.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-10.1 - 17.6i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + 34.4T + 6.24e3T^{2} \) |
| 83 | \( 1 + (12.6 - 7.29i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-71.1 - 41.0i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (3.32 + 5.75i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.78339561234833718395434599104, −12.55331093849862351134631546139, −11.63006585771840877709120842464, −10.89422984302615739259953987543, −8.927662515293641344153225426711, −7.916592088828505004972683374338, −7.28801599559583448150356705551, −6.04636182657229730364545276960, −4.74025056836412932444272370620, −2.62790435906967618886673913925,
0.24013100927261132309343328992, 3.10982069842431837649107519305, 4.63511581955423404830859346087, 5.04366190419506630237465792486, 7.67254402804001737739112064532, 8.322858255163587023320181715387, 9.984288919958079983443687706901, 10.46723558488123762403136341524, 11.56202372245911353529566866724, 12.42648390587229497123258281621