L(s) = 1 | + (1.22 + 0.707i)2-s + (2.99 − 0.240i)3-s + (0.999 + 1.73i)4-s + (0.665 − 0.384i)5-s + (3.83 + 1.82i)6-s + (−1.32 + 2.29i)7-s + 2.82i·8-s + (8.88 − 1.43i)9-s + 1.08·10-s + (−3.15 − 1.82i)11-s + (3.40 + 4.93i)12-s + (−2.18 − 3.77i)13-s + (−3.24 + 1.87i)14-s + (1.89 − 1.30i)15-s + (−2.00 + 3.46i)16-s − 8.55i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.996 − 0.0800i)3-s + (0.249 + 0.433i)4-s + (0.133 − 0.0768i)5-s + (0.638 + 0.303i)6-s + (−0.188 + 0.327i)7-s + 0.353i·8-s + (0.987 − 0.159i)9-s + 0.108·10-s + (−0.286 − 0.165i)11-s + (0.283 + 0.411i)12-s + (−0.167 − 0.290i)13-s + (−0.231 + 0.133i)14-s + (0.126 − 0.0872i)15-s + (−0.125 + 0.216i)16-s − 0.503i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.873 - 0.487i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.873 - 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.43301 + 0.633399i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.43301 + 0.633399i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 - 0.707i)T \) |
| 3 | \( 1 + (-2.99 + 0.240i)T \) |
| 7 | \( 1 + (1.32 - 2.29i)T \) |
good | 5 | \( 1 + (-0.665 + 0.384i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (3.15 + 1.82i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (2.18 + 3.77i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 8.55iT - 289T^{2} \) |
| 19 | \( 1 + 18.7T + 361T^{2} \) |
| 23 | \( 1 + (-10.8 + 6.26i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (14.2 + 8.21i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (6.88 + 11.9i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 28.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-51.3 + 29.6i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (25.7 - 44.5i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (48.0 + 27.7i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 51.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-55.7 + 32.1i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (24.6 - 42.6i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-24.6 - 42.7i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 81.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 140.T + 5.32e3T^{2} \) |
| 79 | \( 1 + (69.7 - 120. i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-116. - 67.0i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 8.94iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-45.2 + 78.3i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.18696796886917857867991248357, −12.71486845818693440139827635765, −11.31165303463920007953020474317, −9.903366196040260423135435915024, −8.819266892832675505864968266389, −7.80825180991220408878011582693, −6.67761322333840869295829262261, −5.22528931162062086147335120167, −3.73953766726472106729415183738, −2.37861755344994660352101842368,
2.04086027698174369839903178900, 3.50043629669992014570836761126, 4.68487846752349710613755064180, 6.41184950643219551199678209355, 7.63469459066333433431702142675, 8.914737856737883381741207817977, 10.02456633906276210820186627860, 10.87006338150758691382109084726, 12.37109689971589359496647766233, 13.13343999393897601275097185953