L(s) = 1 | + (1.22 − 0.707i)2-s + (−1.41 − 2.64i)3-s + (0.999 − 1.73i)4-s + (−3.60 − 2.08i)5-s + (−3.60 − 2.24i)6-s + (−1.32 − 2.29i)7-s − 2.82i·8-s + (−5.01 + 7.47i)9-s − 5.89·10-s + (−5.60 + 3.23i)11-s + (−5.99 − 0.202i)12-s + (7.36 − 12.7i)13-s + (−3.24 − 1.87i)14-s + (−0.421 + 12.4i)15-s + (−2.00 − 3.46i)16-s − 18.6i·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.470 − 0.882i)3-s + (0.249 − 0.433i)4-s + (−0.721 − 0.416i)5-s + (−0.600 − 0.373i)6-s + (−0.188 − 0.327i)7-s − 0.353i·8-s + (−0.557 + 0.830i)9-s − 0.589·10-s + (−0.509 + 0.294i)11-s + (−0.499 − 0.0168i)12-s + (0.566 − 0.980i)13-s + (−0.231 − 0.133i)14-s + (−0.0280 + 0.832i)15-s + (−0.125 − 0.216i)16-s − 1.09i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.807 + 0.589i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.807 + 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.397126 - 1.21732i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.397126 - 1.21732i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 + 0.707i)T \) |
| 3 | \( 1 + (1.41 + 2.64i)T \) |
| 7 | \( 1 + (1.32 + 2.29i)T \) |
good | 5 | \( 1 + (3.60 + 2.08i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (5.60 - 3.23i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-7.36 + 12.7i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 18.6iT - 289T^{2} \) |
| 19 | \( 1 - 15.6T + 361T^{2} \) |
| 23 | \( 1 + (-17.1 - 9.88i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (9.30 - 5.37i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-11.1 + 19.3i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 70.8T + 1.36e3T^{2} \) |
| 41 | \( 1 + (7.29 + 4.20i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-24.9 - 43.2i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (62.5 - 36.0i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 80.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (22.8 + 13.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-32.7 - 56.7i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (11.9 - 20.6i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 111. iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 13.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + (59.8 + 103. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-10.0 + 5.81i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 83.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (84.0 + 145. i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.94701801589616468194172926463, −11.71205452507747099936699963460, −11.16668095433490756959845958694, −9.798821965366039500306424899589, −8.074937509060295419378345808291, −7.25828346066407614303404245684, −5.83723324497955421949129968317, −4.71044314024530183786658951680, −2.96379943975587903198619440617, −0.802139226034390117433585145818,
3.24015144742142599720982437356, 4.31135607493739069099575986148, 5.64484898974510347317097489776, 6.70642862159318185631976295317, 8.150898128110779513095102228408, 9.352553846344196089783856497576, 10.78017780692860239356337527992, 11.43530398174233843685927475334, 12.40772203054104744626346257815, 13.66321058561861023979764346301