Properties

Label 2-126-7.4-c11-0-33
Degree $2$
Conductor $126$
Sign $-0.989 + 0.143i$
Analytic cond. $96.8112$
Root an. cond. $9.83927$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−16 − 27.7i)2-s + (−511. + 886. i)4-s + (−1.60e3 − 2.77e3i)5-s + (3.30e4 − 2.96e4i)7-s + 3.27e4·8-s + (−5.12e4 + 8.87e4i)10-s + (5.14e5 − 8.90e5i)11-s − 1.32e6·13-s + (−1.35e6 − 4.42e5i)14-s + (−5.24e5 − 9.08e5i)16-s + (6.26e5 − 1.08e6i)17-s + (−2.39e6 − 4.15e6i)19-s + 3.28e6·20-s − 3.28e7·22-s + (4.72e6 + 8.18e6i)23-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.229 − 0.397i)5-s + (0.744 − 0.667i)7-s + 0.353·8-s + (−0.162 + 0.280i)10-s + (0.962 − 1.66i)11-s − 0.990·13-s + (−0.672 − 0.219i)14-s + (−0.125 − 0.216i)16-s + (0.106 − 0.185i)17-s + (−0.222 − 0.384i)19-s + 0.229·20-s − 1.36·22-s + (0.153 + 0.265i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.143i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126\)    =    \(2 \cdot 3^{2} \cdot 7\)
Sign: $-0.989 + 0.143i$
Analytic conductor: \(96.8112\)
Root analytic conductor: \(9.83927\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{126} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 126,\ (\ :11/2),\ -0.989 + 0.143i)\)

Particular Values

\(L(6)\) \(\approx\) \(1.677683622\)
\(L(\frac12)\) \(\approx\) \(1.677683622\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (16 + 27.7i)T \)
3 \( 1 \)
7 \( 1 + (-3.30e4 + 2.96e4i)T \)
good5 \( 1 + (1.60e3 + 2.77e3i)T + (-2.44e7 + 4.22e7i)T^{2} \)
11 \( 1 + (-5.14e5 + 8.90e5i)T + (-1.42e11 - 2.47e11i)T^{2} \)
13 \( 1 + 1.32e6T + 1.79e12T^{2} \)
17 \( 1 + (-6.26e5 + 1.08e6i)T + (-1.71e13 - 2.96e13i)T^{2} \)
19 \( 1 + (2.39e6 + 4.15e6i)T + (-5.82e13 + 1.00e14i)T^{2} \)
23 \( 1 + (-4.72e6 - 8.18e6i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 - 1.54e8T + 1.22e16T^{2} \)
31 \( 1 + (-7.14e7 + 1.23e8i)T + (-1.27e16 - 2.20e16i)T^{2} \)
37 \( 1 + (-6.49e7 - 1.12e8i)T + (-8.89e16 + 1.54e17i)T^{2} \)
41 \( 1 - 2.27e8T + 5.50e17T^{2} \)
43 \( 1 + 5.66e7T + 9.29e17T^{2} \)
47 \( 1 + (-8.69e8 - 1.50e9i)T + (-1.23e18 + 2.14e18i)T^{2} \)
53 \( 1 + (6.46e8 - 1.11e9i)T + (-4.63e18 - 8.02e18i)T^{2} \)
59 \( 1 + (-4.51e9 + 7.81e9i)T + (-1.50e19 - 2.61e19i)T^{2} \)
61 \( 1 + (3.00e9 + 5.19e9i)T + (-2.17e19 + 3.76e19i)T^{2} \)
67 \( 1 + (-1.96e9 + 3.41e9i)T + (-6.10e19 - 1.05e20i)T^{2} \)
71 \( 1 - 2.31e10T + 2.31e20T^{2} \)
73 \( 1 + (2.31e9 - 4.00e9i)T + (-1.56e20 - 2.71e20i)T^{2} \)
79 \( 1 + (-2.40e10 - 4.15e10i)T + (-3.73e20 + 6.47e20i)T^{2} \)
83 \( 1 + 2.42e10T + 1.28e21T^{2} \)
89 \( 1 + (4.81e10 + 8.33e10i)T + (-1.38e21 + 2.40e21i)T^{2} \)
97 \( 1 + 1.29e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93890813442032148361816836621, −9.747026958358996213881134504243, −8.642198263524098606552466935297, −7.899455832092818010922901917509, −6.53585291179619164692368707574, −4.93521730831081783994929756872, −3.95483430408905952125746674443, −2.67304991053359531696321580068, −1.12028841487385658333271173606, −0.49381450396452801618437969878, 1.31478490369659245847932833912, 2.44434815032180263947847977348, 4.28738224340966732317438199548, 5.19461320495874066152784834506, 6.65359585559810408401750055812, 7.40016612032090772880871297594, 8.536847317539278735607022814604, 9.556308479883149129016544324674, 10.50187446970201811979536119672, 11.87338577923161133869080893903

Graph of the $Z$-function along the critical line