Properties

Label 2-1248-156.155-c1-0-37
Degree $2$
Conductor $1248$
Sign $-0.913 + 0.406i$
Analytic cond. $9.96533$
Root an. cond. $3.15679$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − 1.41i)3-s − 3.41·5-s + 3.41·7-s + (−1.00 + 2.82i)9-s − 0.828i·11-s + (3 − 2i)13-s + (3.41 + 4.82i)15-s − 2.82i·17-s − 2.24·19-s + (−3.41 − 4.82i)21-s + 3.65·23-s + 6.65·25-s + (5.00 − 1.41i)27-s − 6.82i·29-s − 9.07·31-s + ⋯
L(s)  = 1  + (−0.577 − 0.816i)3-s − 1.52·5-s + 1.29·7-s + (−0.333 + 0.942i)9-s − 0.249i·11-s + (0.832 − 0.554i)13-s + (0.881 + 1.24i)15-s − 0.685i·17-s − 0.514·19-s + (−0.745 − 1.05i)21-s + 0.762·23-s + 1.33·25-s + (0.962 − 0.272i)27-s − 1.26i·29-s − 1.62·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.913 + 0.406i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1248\)    =    \(2^{5} \cdot 3 \cdot 13\)
Sign: $-0.913 + 0.406i$
Analytic conductor: \(9.96533\)
Root analytic conductor: \(3.15679\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1248} (1247, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1248,\ (\ :1/2),\ -0.913 + 0.406i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6676162558\)
\(L(\frac12)\) \(\approx\) \(0.6676162558\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1 + 1.41i)T \)
13 \( 1 + (-3 + 2i)T \)
good5 \( 1 + 3.41T + 5T^{2} \)
7 \( 1 - 3.41T + 7T^{2} \)
11 \( 1 + 0.828iT - 11T^{2} \)
17 \( 1 + 2.82iT - 17T^{2} \)
19 \( 1 + 2.24T + 19T^{2} \)
23 \( 1 - 3.65T + 23T^{2} \)
29 \( 1 + 6.82iT - 29T^{2} \)
31 \( 1 + 9.07T + 31T^{2} \)
37 \( 1 + 1.65iT - 37T^{2} \)
41 \( 1 + 3.41T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 - 3.17iT - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 - 3.17iT - 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 + 12.5T + 67T^{2} \)
71 \( 1 + 8.82iT - 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 12.4iT - 79T^{2} \)
83 \( 1 - 8.82iT - 83T^{2} \)
89 \( 1 + 11.4T + 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.038991463411923102229260081793, −8.140255575771365986378362654596, −7.83080570476044991189807594123, −7.09410789390747186601858268127, −6.01841265603733401399244164886, −5.04468517592485000555462171185, −4.28905763790457264791401747501, −3.09751758663445219660593593015, −1.59647302647266000234673884498, −0.33449030984361137159076865561, 1.45128650836431266308074633265, 3.38990137390120777782750934147, 4.13276606701004873527094801372, 4.74186103749307424443154411402, 5.66166442523399324393205179612, 6.87232700327780998496989578258, 7.61434321247419915291869442334, 8.702024474735192035383736455541, 8.858536125022809072975036852763, 10.39574375084192473758967170595

Graph of the $Z$-function along the critical line