Properties

Label 2-1248-8.5-c1-0-21
Degree $2$
Conductor $1248$
Sign $-0.891 + 0.453i$
Analytic cond. $9.96533$
Root an. cond. $3.15679$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 2.79i·5-s − 1.28·7-s − 9-s + 1.50i·11-s i·13-s + 2.79·15-s − 5.80·17-s − 0.0480i·19-s − 1.28i·21-s + 1.11·23-s − 2.80·25-s i·27-s − 9.39i·29-s − 6.32·31-s + ⋯
L(s)  = 1  + 0.577i·3-s − 1.24i·5-s − 0.485·7-s − 0.333·9-s + 0.455i·11-s − 0.277i·13-s + 0.721·15-s − 1.40·17-s − 0.0110i·19-s − 0.280i·21-s + 0.232·23-s − 0.560·25-s − 0.192i·27-s − 1.74i·29-s − 1.13·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1248\)    =    \(2^{5} \cdot 3 \cdot 13\)
Sign: $-0.891 + 0.453i$
Analytic conductor: \(9.96533\)
Root analytic conductor: \(3.15679\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1248} (625, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1248,\ (\ :1/2),\ -0.891 + 0.453i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4030838919\)
\(L(\frac12)\) \(\approx\) \(0.4030838919\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
13 \( 1 + iT \)
good5 \( 1 + 2.79iT - 5T^{2} \)
7 \( 1 + 1.28T + 7T^{2} \)
11 \( 1 - 1.50iT - 11T^{2} \)
17 \( 1 + 5.80T + 17T^{2} \)
19 \( 1 + 0.0480iT - 19T^{2} \)
23 \( 1 - 1.11T + 23T^{2} \)
29 \( 1 + 9.39iT - 29T^{2} \)
31 \( 1 + 6.32T + 31T^{2} \)
37 \( 1 - 2.70iT - 37T^{2} \)
41 \( 1 + 6.18T + 41T^{2} \)
43 \( 1 - 7.57iT - 43T^{2} \)
47 \( 1 + 12.0T + 47T^{2} \)
53 \( 1 - 3.90iT - 53T^{2} \)
59 \( 1 + 6.54iT - 59T^{2} \)
61 \( 1 + 2.76iT - 61T^{2} \)
67 \( 1 + 4.04iT - 67T^{2} \)
71 \( 1 + 9.43T + 71T^{2} \)
73 \( 1 - 0.863T + 73T^{2} \)
79 \( 1 + 3.13T + 79T^{2} \)
83 \( 1 + 5.11iT - 83T^{2} \)
89 \( 1 - 15.1T + 89T^{2} \)
97 \( 1 + 12.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.463086776265626211578698323228, −8.636429738117454028569293109530, −7.980373020110242745176478692220, −6.77912244556199875293206999247, −5.90505905595725447533099623373, −4.83912730914904686629620809199, −4.41179494363706817554809483098, −3.21845711172931379578167262304, −1.84634649840285564243833867598, −0.15849126424939616790988588424, 1.84232965219323793639876208142, 2.92770094320069295155558313591, 3.67561380957610362619106496124, 5.08628650181498001641765696338, 6.17973891985686339164861090568, 6.86823651768640321695626456199, 7.22753989460303540096628791960, 8.490702297008216872941108832645, 9.110325867935258232036396009473, 10.18589042213334775198226746733

Graph of the $Z$-function along the critical line