Properties

Label 2-1248-13.12-c1-0-27
Degree $2$
Conductor $1248$
Sign $-0.691 + 0.722i$
Analytic cond. $9.96533$
Root an. cond. $3.15679$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3.60i·5-s − 4.49i·7-s + 9-s + 0.890i·11-s + (−2.60 − 2.49i)13-s − 3.60i·15-s + 2·17-s + 4.49i·19-s − 4.49i·21-s − 1.78·23-s − 7.98·25-s + 27-s + 0.219·29-s + 2.71i·31-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.61i·5-s − 1.69i·7-s + 0.333·9-s + 0.268i·11-s + (−0.722 − 0.691i)13-s − 0.930i·15-s + 0.485·17-s + 1.03i·19-s − 0.980i·21-s − 0.371·23-s − 1.59·25-s + 0.192·27-s + 0.0408·29-s + 0.487i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1248\)    =    \(2^{5} \cdot 3 \cdot 13\)
Sign: $-0.691 + 0.722i$
Analytic conductor: \(9.96533\)
Root analytic conductor: \(3.15679\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1248} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1248,\ (\ :1/2),\ -0.691 + 0.722i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.736180965\)
\(L(\frac12)\) \(\approx\) \(1.736180965\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + (2.60 + 2.49i)T \)
good5 \( 1 + 3.60iT - 5T^{2} \)
7 \( 1 + 4.49iT - 7T^{2} \)
11 \( 1 - 0.890iT - 11T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 4.49iT - 19T^{2} \)
23 \( 1 + 1.78T + 23T^{2} \)
29 \( 1 - 0.219T + 29T^{2} \)
31 \( 1 - 2.71iT - 31T^{2} \)
37 \( 1 - 5.78iT - 37T^{2} \)
41 \( 1 + 10.8iT - 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 - 4.89iT - 47T^{2} \)
53 \( 1 + 14.1T + 53T^{2} \)
59 \( 1 - 8.09iT - 59T^{2} \)
61 \( 1 - 7.42T + 61T^{2} \)
67 \( 1 - 3.70iT - 67T^{2} \)
71 \( 1 + 5.87iT - 71T^{2} \)
73 \( 1 + 7.20iT - 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 + 14.3iT - 83T^{2} \)
89 \( 1 + 6.37iT - 89T^{2} \)
97 \( 1 + 15.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.448361233268064717446974582593, −8.503614265402130867249403991798, −7.74955112244625516079948879644, −7.34131747606038750364717157329, −5.94789087454917716652316964970, −4.87475957929904451186531435475, −4.27123620144871678144696710412, −3.36809255112074406128377501545, −1.68662952918541800166150417226, −0.67934365049726557331540198012, 2.25639762846139152353864864929, 2.62804363828673781097324886435, 3.61134646750333181644177605412, 4.96022073342763300880977751613, 6.02567816036941881732805103686, 6.67619118973032381260416361798, 7.56352124484518773307925851025, 8.355246756903773589177758994083, 9.425585824441476253021108084067, 9.664575915526977139662894870434

Graph of the $Z$-function along the critical line