L(s) = 1 | + (1 + i)5-s + (2 − 2i)7-s + (2 − 2i)11-s − 4·13-s + (1 − 4i)17-s − 8i·19-s + (−2 + 2i)23-s − 3i·25-s + (3 + 3i)29-s + (6 + 6i)31-s + 4·35-s + (−5 − 5i)37-s + (−1 + i)41-s + 8i·43-s − i·49-s + ⋯ |
L(s) = 1 | + (0.447 + 0.447i)5-s + (0.755 − 0.755i)7-s + (0.603 − 0.603i)11-s − 1.10·13-s + (0.242 − 0.970i)17-s − 1.83i·19-s + (−0.417 + 0.417i)23-s − 0.600i·25-s + (0.557 + 0.557i)29-s + (1.07 + 1.07i)31-s + 0.676·35-s + (−0.821 − 0.821i)37-s + (−0.156 + 0.156i)41-s + 1.21i·43-s − 0.142i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.833902490\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.833902490\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (-1 + 4i)T \) |
good | 5 | \( 1 + (-1 - i)T + 5iT^{2} \) |
| 7 | \( 1 + (-2 + 2i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2 + 2i)T - 11iT^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 19 | \( 1 + 8iT - 19T^{2} \) |
| 23 | \( 1 + (2 - 2i)T - 23iT^{2} \) |
| 29 | \( 1 + (-3 - 3i)T + 29iT^{2} \) |
| 31 | \( 1 + (-6 - 6i)T + 31iT^{2} \) |
| 37 | \( 1 + (5 + 5i)T + 37iT^{2} \) |
| 41 | \( 1 + (1 - i)T - 41iT^{2} \) |
| 43 | \( 1 - 8iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 12iT - 53T^{2} \) |
| 59 | \( 1 + 8iT - 59T^{2} \) |
| 61 | \( 1 + (1 - i)T - 61iT^{2} \) |
| 67 | \( 1 - 12T + 67T^{2} \) |
| 71 | \( 1 + (-6 - 6i)T + 71iT^{2} \) |
| 73 | \( 1 + (3 + 3i)T + 73iT^{2} \) |
| 79 | \( 1 + (2 - 2i)T - 79iT^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 - 8T + 89T^{2} \) |
| 97 | \( 1 + (-3 - 3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.692105070978684921751132248115, −8.840472931895572960922466664843, −7.912073971212656658293767892601, −7.00411520041302951401685462022, −6.54424462863782576758474608585, −5.13474322475783092014204763462, −4.64808978263069280436016960670, −3.29573052222550213543115332064, −2.31573472974289544915128209932, −0.825902666573810959315898493091,
1.53249864358340460390757576502, 2.31080133021042445187302819978, 3.86375521000672725990504983931, 4.77961239872255020688562671716, 5.62588177234321767236045425242, 6.34115583552783806891136225798, 7.56748276825542485835839369170, 8.241140964231758419917645870570, 8.992068170357823798352967295331, 9.950992718149234160333523946038