L(s) = 1 | + (−0.185 + 1.40i)2-s + (−1.93 − 0.520i)4-s + 3.84i·5-s − 1.15·7-s + (1.08 − 2.61i)8-s + (−5.38 − 0.713i)10-s + 2.52i·11-s − 0.601i·13-s + (0.214 − 1.62i)14-s + (3.45 + 2.00i)16-s − 17-s + 7.42i·19-s + (2.00 − 7.42i)20-s + (−3.54 − 0.469i)22-s − 5.19·23-s + ⋯ |
L(s) = 1 | + (−0.131 + 0.991i)2-s + (−0.965 − 0.260i)4-s + 1.71i·5-s − 0.437·7-s + (0.384 − 0.923i)8-s + (−1.70 − 0.225i)10-s + 0.762i·11-s − 0.166i·13-s + (0.0573 − 0.433i)14-s + (0.864 + 0.502i)16-s − 0.242·17-s + 1.70i·19-s + (0.447 − 1.66i)20-s + (−0.756 − 0.100i)22-s − 1.08·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.384 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.384 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6438245541\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6438245541\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.185 - 1.40i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 5 | \( 1 - 3.84iT - 5T^{2} \) |
| 7 | \( 1 + 1.15T + 7T^{2} \) |
| 11 | \( 1 - 2.52iT - 11T^{2} \) |
| 13 | \( 1 + 0.601iT - 13T^{2} \) |
| 19 | \( 1 - 7.42iT - 19T^{2} \) |
| 23 | \( 1 + 5.19T + 23T^{2} \) |
| 29 | \( 1 + 3.84iT - 29T^{2} \) |
| 31 | \( 1 - 3.89T + 31T^{2} \) |
| 37 | \( 1 + 5.94iT - 37T^{2} \) |
| 41 | \( 1 + 8.77T + 41T^{2} \) |
| 43 | \( 1 + 2.75iT - 43T^{2} \) |
| 47 | \( 1 - 9.52T + 47T^{2} \) |
| 53 | \( 1 + 6.26iT - 53T^{2} \) |
| 59 | \( 1 - 6.81iT - 59T^{2} \) |
| 61 | \( 1 - 3.84iT - 61T^{2} \) |
| 67 | \( 1 + 1.16iT - 67T^{2} \) |
| 71 | \( 1 - 13.6T + 71T^{2} \) |
| 73 | \( 1 + 7.09T + 73T^{2} \) |
| 79 | \( 1 - 10.8T + 79T^{2} \) |
| 83 | \( 1 + 9.76iT - 83T^{2} \) |
| 89 | \( 1 + 14.3T + 89T^{2} \) |
| 97 | \( 1 + 7.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05671621081805689805132930623, −9.712091247739161210488039391922, −8.376818764788126692713381750798, −7.64191080943679620668463522863, −6.97190274643569759598904655954, −6.26765913294058349349971654645, −5.64014892702060883206856140737, −4.18628679851879349965342679962, −3.46013086426460535301612491284, −2.10946896161342768600355726021,
0.29884304102875100521994951937, 1.38314724309166161412235040496, 2.72473966592247212393135909163, 3.89670850696967669888883161633, 4.75485878419819140377536005863, 5.38515136666584675563535284028, 6.59165750940984016923741901608, 8.043963109803714483879370166889, 8.556836063366813248869339643970, 9.242862327138719545017039870227