L(s) = 1 | + (−1.37 − 0.310i)2-s + (1.80 + 0.856i)4-s − 2.33i·5-s − 1.57·7-s + (−2.22 − 1.74i)8-s + (−0.724 + 3.22i)10-s + 2.23i·11-s + 1.35i·13-s + (2.17 + 0.490i)14-s + (2.53 + 3.09i)16-s − 17-s + 4.21i·19-s + (1.99 − 4.21i)20-s + (0.695 − 3.09i)22-s + 8.48·23-s + ⋯ |
L(s) = 1 | + (−0.975 − 0.219i)2-s + (0.903 + 0.428i)4-s − 1.04i·5-s − 0.597·7-s + (−0.787 − 0.616i)8-s + (−0.229 + 1.01i)10-s + 0.675i·11-s + 0.375i·13-s + (0.582 + 0.131i)14-s + (0.632 + 0.774i)16-s − 0.242·17-s + 0.967i·19-s + (0.447 − 0.943i)20-s + (0.148 − 0.658i)22-s + 1.77·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.787 + 0.616i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.787 + 0.616i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9628471944\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9628471944\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 + 0.310i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 5 | \( 1 + 2.33iT - 5T^{2} \) |
| 7 | \( 1 + 1.57T + 7T^{2} \) |
| 11 | \( 1 - 2.23iT - 11T^{2} \) |
| 13 | \( 1 - 1.35iT - 13T^{2} \) |
| 19 | \( 1 - 4.21iT - 19T^{2} \) |
| 23 | \( 1 - 8.48T + 23T^{2} \) |
| 29 | \( 1 - 2.33iT - 29T^{2} \) |
| 31 | \( 1 - 9.09T + 31T^{2} \) |
| 37 | \( 1 + 6.29iT - 37T^{2} \) |
| 41 | \( 1 - 0.550T + 41T^{2} \) |
| 43 | \( 1 + 11.6iT - 43T^{2} \) |
| 47 | \( 1 - 4.96T + 47T^{2} \) |
| 53 | \( 1 + 1.77iT - 53T^{2} \) |
| 59 | \( 1 + 3.94iT - 59T^{2} \) |
| 61 | \( 1 + 2.33iT - 61T^{2} \) |
| 67 | \( 1 + 2.44iT - 67T^{2} \) |
| 71 | \( 1 - 3.86T + 71T^{2} \) |
| 73 | \( 1 - 1.39T + 73T^{2} \) |
| 79 | \( 1 + 3.64T + 79T^{2} \) |
| 83 | \( 1 - 8.09iT - 83T^{2} \) |
| 89 | \( 1 + 6.43T + 89T^{2} \) |
| 97 | \( 1 - 11.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.503617773306759846138113791831, −8.922442470572623181805798418982, −8.269656986992751240775525924052, −7.23945388882796188023257806298, −6.59982394891228348311236468407, −5.47004984701364441179647470339, −4.40745678510249243032113045600, −3.25747428657113696272469454462, −2.00309851616261767414780238234, −0.807790654931858911717680244497,
0.891587055197963600574124810015, 2.77776968806371675871839975976, 3.04540371334432396548250639695, 4.82208858108018776447780521676, 6.08271132332038388514108620635, 6.61490520637176777722618802624, 7.28668103754644716918690193677, 8.239148405949295132182272862219, 9.015562548815105088780263202904, 9.804373613515783734734302805816