L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (1.83 − 3.17i)5-s − 0.999·6-s + (2.42 + 1.06i)7-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (3.17 − 1.83i)10-s + (1.01 − 0.584i)11-s + (−0.866 − 0.499i)12-s − 1.90·13-s + (1.56 + 2.13i)14-s + 3.67i·15-s + (−0.5 + 0.866i)16-s + (−2.60 + 1.50i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.499 + 0.288i)3-s + (0.249 + 0.433i)4-s + (0.821 − 1.42i)5-s − 0.408·6-s + (0.915 + 0.403i)7-s + 0.353i·8-s + (0.166 − 0.288i)9-s + (1.00 − 0.580i)10-s + (0.305 − 0.176i)11-s + (−0.249 − 0.144i)12-s − 0.529·13-s + (0.417 + 0.570i)14-s + 0.948i·15-s + (−0.125 + 0.216i)16-s + (−0.631 + 0.364i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.591581414\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.591581414\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.42 - 1.06i)T \) |
| 29 | \( 1 + (-3.02 + 4.45i)T \) |
good | 5 | \( 1 + (-1.83 + 3.17i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.01 + 0.584i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.90T + 13T^{2} \) |
| 17 | \( 1 + (2.60 - 1.50i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.68 - 3.28i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.47 + 6.02i)T + (-11.5 - 19.9i)T^{2} \) |
| 31 | \( 1 + (3.61 - 2.08i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.88 - 1.66i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.74iT - 41T^{2} \) |
| 43 | \( 1 + 6.27iT - 43T^{2} \) |
| 47 | \( 1 + (1.49 + 0.862i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.26 + 7.38i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.49 - 9.51i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.07 - 5.23i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.07 - 7.05i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.03T + 71T^{2} \) |
| 73 | \( 1 + (8.12 - 4.69i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.60 + 0.924i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4.81T + 83T^{2} \) |
| 89 | \( 1 + (-7.21 - 4.16i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 2.93iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.668501291814932598560729500320, −8.787371566031553394559845462291, −8.303510800426690686101021515977, −7.12906674755911443005452181560, −6.04192655531549369358632267619, −5.36579917627907953771320987813, −4.85777895956149997063427216970, −4.05112636471626302126586126726, −2.37638251155815831673414590631, −1.16452892251125479671257908615,
1.38738688531366645154078979598, 2.45161352697304177860239862796, 3.38530809510383403832080700678, 4.76300255635940147191588984013, 5.38247066119020395175653431151, 6.40823459044279329708724818517, 7.11562447148227417192182842401, 7.60950088480598893732717569850, 9.273597690119308798002003593802, 9.877793645005112221625364725882