| L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−1.79 − 3.10i)5-s − 0.999·6-s + (−1.03 − 2.43i)7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (3.10 + 1.79i)10-s + (−0.742 − 0.428i)11-s + (0.866 − 0.499i)12-s − 6.04·13-s + (2.11 + 1.58i)14-s − 3.58i·15-s + (−0.5 − 0.866i)16-s + (1.53 + 0.885i)17-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 − 0.433i)4-s + (−0.800 − 1.38i)5-s − 0.408·6-s + (−0.392 − 0.919i)7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (0.980 + 0.566i)10-s + (−0.223 − 0.129i)11-s + (0.249 − 0.144i)12-s − 1.67·13-s + (0.565 + 0.424i)14-s − 0.924i·15-s + (−0.125 − 0.216i)16-s + (0.371 + 0.214i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.873 - 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.873 - 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.04147995763\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.04147995763\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (1.03 + 2.43i)T \) |
| 29 | \( 1 + (-5.27 + 1.06i)T \) |
| good | 5 | \( 1 + (1.79 + 3.10i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.742 + 0.428i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6.04T + 13T^{2} \) |
| 17 | \( 1 + (-1.53 - 0.885i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.39 - 1.38i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.91 - 5.05i)T + (-11.5 + 19.9i)T^{2} \) |
| 31 | \( 1 + (6.60 + 3.81i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.36 + 1.36i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9.62iT - 41T^{2} \) |
| 43 | \( 1 - 12.2iT - 43T^{2} \) |
| 47 | \( 1 + (-9.57 + 5.53i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.38 - 4.13i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.23 - 5.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.28 - 3.62i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.92 + 3.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10.5T + 71T^{2} \) |
| 73 | \( 1 + (3.26 + 1.88i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.26 + 2.46i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 9.75T + 83T^{2} \) |
| 89 | \( 1 + (-7.35 + 4.24i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 2.65iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.728987907862621587007755202354, −9.326699547085195000151945979053, −8.373842390829124827594359154801, −7.66078216855139946810400848063, −7.28861462949736985410567779273, −5.86471446978073902004778225792, −4.76378878706191832841760950816, −4.23928960386977501414043318339, −2.95952184971961529604325906367, −1.31584392143391305696455743925,
0.02069623857524929241943157098, 2.39139519370011405551626166950, 2.70186937114518748712201818048, 3.72113359266963505608302408150, 5.06687030705446220310302770413, 6.48479264063910833312862600277, 7.14114701200944357178279112595, 7.64727462583370074418965819138, 8.673188771057523277953088697459, 9.299393933041410248372271329966