L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−1.47 − 2.55i)5-s − 0.999·6-s + (1.71 − 2.01i)7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (2.55 + 1.47i)10-s + (1.36 + 0.789i)11-s + (0.866 − 0.499i)12-s + 5.63·13-s + (−0.483 + 2.60i)14-s − 2.94i·15-s + (−0.5 − 0.866i)16-s + (0.231 + 0.133i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 − 0.433i)4-s + (−0.659 − 1.14i)5-s − 0.408·6-s + (0.649 − 0.760i)7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (0.807 + 0.466i)10-s + (0.412 + 0.237i)11-s + (0.249 − 0.144i)12-s + 1.56·13-s + (−0.129 + 0.695i)14-s − 0.761i·15-s + (−0.125 − 0.216i)16-s + (0.0561 + 0.0324i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.418773603\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.418773603\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-1.71 + 2.01i)T \) |
| 29 | \( 1 + (3.00 - 4.46i)T \) |
good | 5 | \( 1 + (1.47 + 2.55i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.36 - 0.789i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.63T + 13T^{2} \) |
| 17 | \( 1 + (-0.231 - 0.133i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.24 - 1.87i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.48 + 4.30i)T + (-11.5 + 19.9i)T^{2} \) |
| 31 | \( 1 + (-1.67 - 0.965i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.44 + 4.30i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 11.5iT - 41T^{2} \) |
| 43 | \( 1 + 7.42iT - 43T^{2} \) |
| 47 | \( 1 + (-3.86 + 2.23i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.43 - 4.22i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.170 + 0.295i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.48 - 3.16i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.86 + 6.69i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.87T + 71T^{2} \) |
| 73 | \( 1 + (-1.52 - 0.881i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.934 + 0.539i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 16.5T + 83T^{2} \) |
| 89 | \( 1 + (3.51 - 2.02i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 11.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.247140081272191990125452064609, −8.714948620974787024303072195702, −8.180895825637971750139310347302, −7.48568214532705451542775925492, −6.43062851664222737570993430653, −5.33166625175942494451577202046, −4.23856779271493875402837966637, −3.83044058794152674627881100743, −1.87762960768560108355046098502, −0.790301663433346353378045439772,
1.39188587415440146880774297593, 2.58453132801302912091072755632, 3.41109477198120986170169121835, 4.32270793770606450292125082399, 6.05432502522391240486796004832, 6.55299086812146822423797887618, 7.83009038495105652823186153509, 8.047596243125692608771268755929, 8.969371769500695207612146592460, 9.720689167562130318942624683399