| L(s)  = 1  |   + (0.866 − 0.5i)2-s   + (−0.866 − 0.5i)3-s   + (0.499 − 0.866i)4-s   + (0.197 + 0.342i)5-s   − 0.999·6-s   + (−2.52 + 0.784i)7-s   − 0.999i·8-s   + (0.499 + 0.866i)9-s   + (0.342 + 0.197i)10-s   + (4.40 + 2.54i)11-s   + (−0.866 + 0.499i)12-s   − 4.89·13-s   + (−1.79 + 1.94i)14-s   − 0.395i·15-s   + (−0.5 − 0.866i)16-s   + (−5.96 − 3.44i)17-s  + ⋯ | 
 
| L(s)  = 1  |   + (0.612 − 0.353i)2-s   + (−0.499 − 0.288i)3-s   + (0.249 − 0.433i)4-s   + (0.0884 + 0.153i)5-s   − 0.408·6-s   + (−0.955 + 0.296i)7-s   − 0.353i·8-s   + (0.166 + 0.288i)9-s   + (0.108 + 0.0625i)10-s   + (1.32 + 0.767i)11-s   + (−0.249 + 0.144i)12-s   − 1.35·13-s   + (−0.480 + 0.519i)14-s   − 0.102i·15-s   + (−0.125 − 0.216i)16-s   + (−1.44 − 0.835i)17-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.853 - 0.520i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.853 - 0.520i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.08194270082\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.08194270082\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 + (-0.866 + 0.5i)T \)  | 
 | 3 |  \( 1 + (0.866 + 0.5i)T \)  | 
 | 7 |  \( 1 + (2.52 - 0.784i)T \)  | 
 | 29 |  \( 1 + (-1.39 - 5.20i)T \)  | 
| good | 5 |  \( 1 + (-0.197 - 0.342i)T + (-2.5 + 4.33i)T^{2} \)  | 
 | 11 |  \( 1 + (-4.40 - 2.54i)T + (5.5 + 9.52i)T^{2} \)  | 
 | 13 |  \( 1 + 4.89T + 13T^{2} \)  | 
 | 17 |  \( 1 + (5.96 + 3.44i)T + (8.5 + 14.7i)T^{2} \)  | 
 | 19 |  \( 1 + (3.56 - 2.05i)T + (9.5 - 16.4i)T^{2} \)  | 
 | 23 |  \( 1 + (4.50 + 7.80i)T + (-11.5 + 19.9i)T^{2} \)  | 
 | 31 |  \( 1 + (7.08 + 4.09i)T + (15.5 + 26.8i)T^{2} \)  | 
 | 37 |  \( 1 + (8.10 - 4.68i)T + (18.5 - 32.0i)T^{2} \)  | 
 | 41 |  \( 1 - 5.74iT - 41T^{2} \)  | 
 | 43 |  \( 1 - 9.05iT - 43T^{2} \)  | 
 | 47 |  \( 1 + (-6.01 + 3.47i)T + (23.5 - 40.7i)T^{2} \)  | 
 | 53 |  \( 1 + (4.23 - 7.33i)T + (-26.5 - 45.8i)T^{2} \)  | 
 | 59 |  \( 1 + (-0.790 + 1.36i)T + (-29.5 - 51.0i)T^{2} \)  | 
 | 61 |  \( 1 + (-1.02 + 0.593i)T + (30.5 - 52.8i)T^{2} \)  | 
 | 67 |  \( 1 + (-1.06 + 1.85i)T + (-33.5 - 58.0i)T^{2} \)  | 
 | 71 |  \( 1 + 13.0T + 71T^{2} \)  | 
 | 73 |  \( 1 + (-9.16 - 5.29i)T + (36.5 + 63.2i)T^{2} \)  | 
 | 79 |  \( 1 + (-1.62 + 0.936i)T + (39.5 - 68.4i)T^{2} \)  | 
 | 83 |  \( 1 + 6.72T + 83T^{2} \)  | 
 | 89 |  \( 1 + (3.19 - 1.84i)T + (44.5 - 77.0i)T^{2} \)  | 
 | 97 |  \( 1 + 10.0iT - 97T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.479489956924565344420244962518, −8.602961703373822034815752737755, −7.07144078830496097011692358263, −6.70613795514158174421768420809, −6.03285861119793110473346384486, −4.73001156433570645558791279406, −4.23406738946072187975145982147, −2.77708271103361932964172763137, −1.95476854067895879478093180932, −0.02737356664235244937613150455, 
2.03554866995551954119266176679, 3.60447526345455261209710814348, 4.04928681788058117913820925364, 5.22707127854734831163593153645, 6.02935515377752146971847847451, 6.77610596476428376723736022441, 7.35085133280931109845896991768, 8.857800085590323583270043685120, 9.207006707723881653425671222623, 10.29416377751282948641710661789