L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.956 + 1.65i)5-s − 0.999·6-s + (−2.58 − 0.568i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (0.956 + 1.65i)10-s + (1.17 + 2.02i)11-s + (−0.499 + 0.866i)12-s + 1.91·13-s + (−1.78 + 1.95i)14-s + 1.91·15-s + (−0.5 + 0.866i)16-s + (2.69 + 4.67i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.427 + 0.740i)5-s − 0.408·6-s + (−0.976 − 0.214i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.302 + 0.523i)10-s + (0.353 + 0.611i)11-s + (−0.144 + 0.249i)12-s + 0.530·13-s + (−0.476 + 0.522i)14-s + 0.493·15-s + (−0.125 + 0.216i)16-s + (0.654 + 1.13i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.779 + 0.626i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.779 + 0.626i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.431548519\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.431548519\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (2.58 + 0.568i)T \) |
| 29 | \( 1 - T \) |
good | 5 | \( 1 + (0.956 - 1.65i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.17 - 2.02i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.91T + 13T^{2} \) |
| 17 | \( 1 + (-2.69 - 4.67i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.11 + 5.39i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.11 + 1.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 31 | \( 1 + (1.44 + 2.49i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.612 + 1.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 12.3T + 41T^{2} \) |
| 43 | \( 1 - 0.313T + 43T^{2} \) |
| 47 | \( 1 + (0.0288 - 0.0499i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.56 + 4.44i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.343 - 0.594i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.14 + 1.97i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.18 - 5.51i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.37T + 71T^{2} \) |
| 73 | \( 1 + (-5.45 - 9.45i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.50 - 9.54i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.8T + 83T^{2} \) |
| 89 | \( 1 + (-1.14 + 1.97i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 9.36T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.774637202448881400450742412212, −9.049421327644493190073161416172, −7.83659205883531575138209341119, −6.98860050425827533436915164546, −6.39678650488688520086532304240, −5.47558545641340903426984084218, −4.19355345875756338261011004645, −3.39637074209298066839200436131, −2.46118953219168902392053807676, −0.949377276725421672081466112012,
0.801332111557492907798730196116, 3.09893361553798881765003525842, 3.75611600013567359986008124585, 4.77817236986403485277904828200, 5.67776422743676887675907200667, 6.22630289427648993938721932314, 7.34079337967561079389691947536, 8.159525868978731236788746666430, 9.106906688647096000639811215548, 9.514304650796730200389921259347