Properties

Label 2-1216-4.3-c2-0-55
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $33.1336$
Root an. cond. $5.75617$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.49i·3-s + 8.74·5-s − 7.73i·7-s − 11.1·9-s − 20.6i·11-s + 4.10·13-s + 39.2i·15-s − 12.3·17-s + 4.35i·19-s + 34.7·21-s + 0.917i·23-s + 51.5·25-s − 9.71i·27-s − 40.2·29-s − 37.8i·31-s + ⋯
L(s)  = 1  + 1.49i·3-s + 1.74·5-s − 1.10i·7-s − 1.24·9-s − 1.87i·11-s + 0.316·13-s + 2.61i·15-s − 0.726·17-s + 0.229i·19-s + 1.65·21-s + 0.0398i·23-s + 2.06·25-s − 0.359i·27-s − 1.38·29-s − 1.22i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(33.1336\)
Root analytic conductor: \(5.75617\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1216} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.627482858\)
\(L(\frac12)\) \(\approx\) \(2.627482858\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - 4.35iT \)
good3 \( 1 - 4.49iT - 9T^{2} \)
5 \( 1 - 8.74T + 25T^{2} \)
7 \( 1 + 7.73iT - 49T^{2} \)
11 \( 1 + 20.6iT - 121T^{2} \)
13 \( 1 - 4.10T + 169T^{2} \)
17 \( 1 + 12.3T + 289T^{2} \)
23 \( 1 - 0.917iT - 529T^{2} \)
29 \( 1 + 40.2T + 841T^{2} \)
31 \( 1 + 37.8iT - 961T^{2} \)
37 \( 1 - 47.2T + 1.36e3T^{2} \)
41 \( 1 - 36.9T + 1.68e3T^{2} \)
43 \( 1 + 59.0iT - 1.84e3T^{2} \)
47 \( 1 + 4.91iT - 2.20e3T^{2} \)
53 \( 1 - 77.7T + 2.80e3T^{2} \)
59 \( 1 + 80.4iT - 3.48e3T^{2} \)
61 \( 1 + 9.69T + 3.72e3T^{2} \)
67 \( 1 - 7.57iT - 4.48e3T^{2} \)
71 \( 1 - 103. iT - 5.04e3T^{2} \)
73 \( 1 - 113.T + 5.32e3T^{2} \)
79 \( 1 - 100. iT - 6.24e3T^{2} \)
83 \( 1 - 13.8iT - 6.88e3T^{2} \)
89 \( 1 + 24.0T + 7.92e3T^{2} \)
97 \( 1 + 108.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.583016146852391135924582963968, −9.091024730121276752615261989952, −8.213755934620881377390248958596, −6.83633359733152854798002257947, −5.78881523204582529945167316135, −5.52744820942617996043481496789, −4.22278984467302843859486317568, −3.57285256544568158381676864766, −2.36497400907795238213974056682, −0.78532194566550536430513791130, 1.38321854229156541344200678531, 2.12777896644640530899391161005, 2.57395368307686151570983316967, 4.66882769156511525996921928591, 5.63894379106106097495041574487, 6.25502179884028064137434228438, 6.93361325058374819338260568357, 7.71576775214361121623923321321, 8.928832352039284951507100134193, 9.332379157961176898051271373604

Graph of the $Z$-function along the critical line