Properties

Label 2-1216-4.3-c2-0-15
Degree $2$
Conductor $1216$
Sign $-1$
Analytic cond. $33.1336$
Root an. cond. $5.75617$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.76i·3-s + 0.377·5-s + 10.4i·7-s + 1.38·9-s + 5.53i·11-s + 10.3·13-s + 1.04i·15-s − 32.8·17-s + 4.35i·19-s − 28.8·21-s + 28.0i·23-s − 24.8·25-s + 28.6i·27-s + 35.5·29-s − 35.5i·31-s + ⋯
L(s)  = 1  + 0.920i·3-s + 0.0754·5-s + 1.49i·7-s + 0.153·9-s + 0.503i·11-s + 0.794·13-s + 0.0694i·15-s − 1.93·17-s + 0.229i·19-s − 1.37·21-s + 1.21i·23-s − 0.994·25-s + 1.06i·27-s + 1.22·29-s − 1.14i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-1$
Analytic conductor: \(33.1336\)
Root analytic conductor: \(5.75617\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1216} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.482002018\)
\(L(\frac12)\) \(\approx\) \(1.482002018\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - 4.35iT \)
good3 \( 1 - 2.76iT - 9T^{2} \)
5 \( 1 - 0.377T + 25T^{2} \)
7 \( 1 - 10.4iT - 49T^{2} \)
11 \( 1 - 5.53iT - 121T^{2} \)
13 \( 1 - 10.3T + 169T^{2} \)
17 \( 1 + 32.8T + 289T^{2} \)
23 \( 1 - 28.0iT - 529T^{2} \)
29 \( 1 - 35.5T + 841T^{2} \)
31 \( 1 + 35.5iT - 961T^{2} \)
37 \( 1 - 40.2T + 1.36e3T^{2} \)
41 \( 1 - 32.5T + 1.68e3T^{2} \)
43 \( 1 + 26.6iT - 1.84e3T^{2} \)
47 \( 1 - 92.7iT - 2.20e3T^{2} \)
53 \( 1 - 1.54T + 2.80e3T^{2} \)
59 \( 1 + 88.8iT - 3.48e3T^{2} \)
61 \( 1 + 98.4T + 3.72e3T^{2} \)
67 \( 1 - 57.5iT - 4.48e3T^{2} \)
71 \( 1 + 78.2iT - 5.04e3T^{2} \)
73 \( 1 + 88.1T + 5.32e3T^{2} \)
79 \( 1 - 56.9iT - 6.24e3T^{2} \)
83 \( 1 + 44.3iT - 6.88e3T^{2} \)
89 \( 1 - 70.2T + 7.92e3T^{2} \)
97 \( 1 + 168.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.592563418956155472242739764243, −9.384458633491643081998474895793, −8.554932650983712015620087408814, −7.61663625907609426719444924744, −6.35630903461337388233999910542, −5.77613997055904160177683388945, −4.68790144688492603635396542257, −4.06253767866056677373203629644, −2.78491175453027390294772060978, −1.77944604345698358578445737117, 0.44305665912775991145229007818, 1.37883999398467750342833322858, 2.62561548202161741177818507240, 4.02591261539007292717805827690, 4.57785336677869777785531650713, 6.19524998391717668566503694064, 6.66098620988256308406105463483, 7.35978937530115056386063330641, 8.245658521460713075397637064562, 8.924205451111232485133471981358

Graph of the $Z$-function along the critical line