| L(s) = 1 | + 3·5-s + 2·8-s + 3·25-s + 6·40-s − 3·47-s − 3·49-s + 64-s + 6·107-s − 3·113-s − 3·121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
| L(s) = 1 | + 3·5-s + 2·8-s + 3·25-s + 6·40-s − 3·47-s − 3·49-s + 64-s + 6·107-s − 3·113-s − 3·121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{30} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{30} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.233175251\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.233175251\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( ( 1 - T + T^{2} )^{3} \) |
| good | 2 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 7 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 11 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 13 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 17 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 19 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 23 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 29 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 31 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 37 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 41 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 43 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 47 | \( ( 1 + T )^{6}( 1 - T + T^{2} )^{3} \) |
| 53 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 61 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 67 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 71 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 73 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 79 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 83 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 89 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 97 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.42403670455020529932128691637, −5.14503441570692434650679970820, −5.03965394631363721020175065647, −4.87192026932947252345106588910, −4.82455115323385194506942301479, −4.73530692255601190862159569826, −4.47767367291054647539826962080, −4.24986825529568919630353379582, −4.18792924045637888091612635364, −3.90574347852655801628328596824, −3.74066853534088770495302106891, −3.42730116950810653028055622756, −3.39654279676769974666416316783, −3.22863440300120722587320186993, −2.92282612118883291678072368072, −2.76029924715524281446289401417, −2.57063535871271363650588059072, −2.31390761245212291527448806302, −2.02760841365534393785105269913, −2.01684037435772616157819798221, −1.66709214923435557140922791929, −1.60691308174696087125175910576, −1.53750201066889805159593740776, −1.30717069961066755328970863679, −0.836481394621267295993117142369,
0.836481394621267295993117142369, 1.30717069961066755328970863679, 1.53750201066889805159593740776, 1.60691308174696087125175910576, 1.66709214923435557140922791929, 2.01684037435772616157819798221, 2.02760841365534393785105269913, 2.31390761245212291527448806302, 2.57063535871271363650588059072, 2.76029924715524281446289401417, 2.92282612118883291678072368072, 3.22863440300120722587320186993, 3.39654279676769974666416316783, 3.42730116950810653028055622756, 3.74066853534088770495302106891, 3.90574347852655801628328596824, 4.18792924045637888091612635364, 4.24986825529568919630353379582, 4.47767367291054647539826962080, 4.73530692255601190862159569826, 4.82455115323385194506942301479, 4.87192026932947252345106588910, 5.03965394631363721020175065647, 5.14503441570692434650679970820, 5.42403670455020529932128691637
Plot not available for L-functions of degree greater than 10.