Properties

Label 2-1210-11.10-c2-0-32
Degree $2$
Conductor $1210$
Sign $0.927 - 0.372i$
Analytic cond. $32.9701$
Root an. cond. $5.74196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s + 3.90·3-s − 2.00·4-s + 2.23·5-s − 5.52i·6-s + 6.10i·7-s + 2.82i·8-s + 6.27·9-s − 3.16i·10-s − 7.81·12-s + 17.0i·13-s + 8.63·14-s + 8.73·15-s + 4.00·16-s + 8.77i·17-s − 8.87i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 1.30·3-s − 0.500·4-s + 0.447·5-s − 0.921i·6-s + 0.872i·7-s + 0.353i·8-s + 0.697·9-s − 0.316i·10-s − 0.651·12-s + 1.31i·13-s + 0.616·14-s + 0.582·15-s + 0.250·16-s + 0.516i·17-s − 0.493i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 - 0.372i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.927 - 0.372i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1210\)    =    \(2 \cdot 5 \cdot 11^{2}\)
Sign: $0.927 - 0.372i$
Analytic conductor: \(32.9701\)
Root analytic conductor: \(5.74196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1210} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1210,\ (\ :1),\ 0.927 - 0.372i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.967217949\)
\(L(\frac12)\) \(\approx\) \(2.967217949\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41iT \)
5 \( 1 - 2.23T \)
11 \( 1 \)
good3 \( 1 - 3.90T + 9T^{2} \)
7 \( 1 - 6.10iT - 49T^{2} \)
13 \( 1 - 17.0iT - 169T^{2} \)
17 \( 1 - 8.77iT - 289T^{2} \)
19 \( 1 + 19.0iT - 361T^{2} \)
23 \( 1 - 7.59T + 529T^{2} \)
29 \( 1 - 47.7iT - 841T^{2} \)
31 \( 1 + 0.442T + 961T^{2} \)
37 \( 1 - 49.5T + 1.36e3T^{2} \)
41 \( 1 - 45.4iT - 1.68e3T^{2} \)
43 \( 1 - 2.14iT - 1.84e3T^{2} \)
47 \( 1 + 66.6T + 2.20e3T^{2} \)
53 \( 1 - 96.5T + 2.80e3T^{2} \)
59 \( 1 - 8.84T + 3.48e3T^{2} \)
61 \( 1 - 54.9iT - 3.72e3T^{2} \)
67 \( 1 + 66.3T + 4.48e3T^{2} \)
71 \( 1 - 48.0T + 5.04e3T^{2} \)
73 \( 1 + 0.643iT - 5.32e3T^{2} \)
79 \( 1 - 87.5iT - 6.24e3T^{2} \)
83 \( 1 + 134. iT - 6.88e3T^{2} \)
89 \( 1 - 70.0T + 7.92e3T^{2} \)
97 \( 1 + 0.284T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.314375875184677701514330668862, −8.978306733476086668873134318879, −8.401966817712505371770072918613, −7.27406205190755390713458963503, −6.27996197507285147428707750065, −5.13226324921491298321885612934, −4.16702254267069364444336669709, −3.06344773109161610015593891184, −2.40024335503414436505745269940, −1.50905315154676807468175909186, 0.74511382485739363037939836238, 2.30494888116930105656517844011, 3.35830759226117364551433064789, 4.16040013601561150426741468354, 5.35342508897519062154077886653, 6.20949382732159966588634149384, 7.33706225495875531130322772576, 7.87059576416179408568274975647, 8.460420610052096958185348170857, 9.455385413626359272690693828277

Graph of the $Z$-function along the critical line