Properties

Label 2-1210-11.10-c2-0-6
Degree $2$
Conductor $1210$
Sign $0.219 - 0.975i$
Analytic cond. $32.9701$
Root an. cond. $5.74196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s + 1.70·3-s − 2.00·4-s − 2.23·5-s − 2.41i·6-s − 2.53i·7-s + 2.82i·8-s − 6.08·9-s + 3.16i·10-s − 3.41·12-s − 13.4i·13-s − 3.58·14-s − 3.82·15-s + 4.00·16-s + 30.5i·17-s + 8.60i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.569·3-s − 0.500·4-s − 0.447·5-s − 0.402i·6-s − 0.361i·7-s + 0.353i·8-s − 0.675·9-s + 0.316i·10-s − 0.284·12-s − 1.03i·13-s − 0.255·14-s − 0.254·15-s + 0.250·16-s + 1.79i·17-s + 0.477i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.219 - 0.975i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.219 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1210\)    =    \(2 \cdot 5 \cdot 11^{2}\)
Sign: $0.219 - 0.975i$
Analytic conductor: \(32.9701\)
Root analytic conductor: \(5.74196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1210} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1210,\ (\ :1),\ 0.219 - 0.975i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5767622790\)
\(L(\frac12)\) \(\approx\) \(0.5767622790\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41iT \)
5 \( 1 + 2.23T \)
11 \( 1 \)
good3 \( 1 - 1.70T + 9T^{2} \)
7 \( 1 + 2.53iT - 49T^{2} \)
13 \( 1 + 13.4iT - 169T^{2} \)
17 \( 1 - 30.5iT - 289T^{2} \)
19 \( 1 + 32.2iT - 361T^{2} \)
23 \( 1 + 0.676T + 529T^{2} \)
29 \( 1 - 34.1iT - 841T^{2} \)
31 \( 1 - 10.8T + 961T^{2} \)
37 \( 1 + 29.5T + 1.36e3T^{2} \)
41 \( 1 - 68.3iT - 1.68e3T^{2} \)
43 \( 1 - 28.1iT - 1.84e3T^{2} \)
47 \( 1 + 19.9T + 2.20e3T^{2} \)
53 \( 1 + 15.2T + 2.80e3T^{2} \)
59 \( 1 + 105.T + 3.48e3T^{2} \)
61 \( 1 - 106. iT - 3.72e3T^{2} \)
67 \( 1 - 44.0T + 4.48e3T^{2} \)
71 \( 1 + 12.5T + 5.04e3T^{2} \)
73 \( 1 - 37.8iT - 5.32e3T^{2} \)
79 \( 1 + 48.1iT - 6.24e3T^{2} \)
83 \( 1 - 92.2iT - 6.88e3T^{2} \)
89 \( 1 + 107.T + 7.92e3T^{2} \)
97 \( 1 - 33.0T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.762038784251216457795480148402, −8.783156427589137830558976519995, −8.336486921959172082522733744001, −7.52750821302863369307608318886, −6.38563939454902838246141657131, −5.31182438435340416973584718166, −4.31585592833600178303557875031, −3.33194047050073034650635059027, −2.70148119250009041405923468727, −1.25465020888553274822424083429, 0.16316932313486827862080786080, 2.05198171595705743316523158059, 3.23999533835553520050315147501, 4.15889352379002548483831227586, 5.21387233200386526155177983403, 6.03951869560669356822337243934, 7.02915933090930695202251508312, 7.77917453210894252643051580729, 8.483315453661602074115601056552, 9.201019170216745880666739189759

Graph of the $Z$-function along the critical line