L(s) = 1 | + 5.19·3-s + 76.2·7-s + 27·9-s − 20.7i·11-s − 182i·13-s + 246i·17-s + 117. i·19-s + 396·21-s + 748.·23-s + 140.·27-s − 78·29-s + 1.47e3i·31-s − 108i·33-s − 530i·37-s − 945. i·39-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.55·7-s + 0.333·9-s − 0.171i·11-s − 1.07i·13-s + 0.851i·17-s + 0.326i·19-s + 0.897·21-s + 1.41·23-s + 0.192·27-s − 0.0927·29-s + 1.53i·31-s − 0.0991i·33-s − 0.387i·37-s − 0.621i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0599i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.998 + 0.0599i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(3.843053060\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.843053060\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 5.19T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 76.2T + 2.40e3T^{2} \) |
| 11 | \( 1 + 20.7iT - 1.46e4T^{2} \) |
| 13 | \( 1 + 182iT - 2.85e4T^{2} \) |
| 17 | \( 1 - 246iT - 8.35e4T^{2} \) |
| 19 | \( 1 - 117. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 748.T + 2.79e5T^{2} \) |
| 29 | \( 1 + 78T + 7.07e5T^{2} \) |
| 31 | \( 1 - 1.47e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 530iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 918T + 2.82e6T^{2} \) |
| 43 | \( 1 - 852.T + 3.41e6T^{2} \) |
| 47 | \( 1 - 3.78e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 4.62e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 228. iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 1.34e3T + 1.38e7T^{2} \) |
| 67 | \( 1 - 1.08e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 1.82e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 926iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 4.39e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 1.19e4T + 4.74e7T^{2} \) |
| 89 | \( 1 + 1.15e4T + 6.27e7T^{2} \) |
| 97 | \( 1 - 1.31e4iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.857049044648111578260714362635, −8.431002121128509405115634650367, −7.72118377778342270636948899010, −6.92438887601172147425612573280, −5.60038515189484643115630878303, −4.97980672455602196511747530495, −3.93540556875925202670630829973, −2.93814651149690795310535718922, −1.80565579456560816887783470374, −0.930389056317729983468221288926,
0.927836178575106615151128281356, 1.92416442793797120360348361446, 2.79636972559070983209809847262, 4.22289183795621717788200560981, 4.71012125441720946158322138406, 5.72856940885095564316362845824, 7.09294731061970624039647953669, 7.47080691103830052112735291619, 8.515571400100647203767504676489, 9.043948921369278191467161277302