L(s) = 1 | + (−2.84 − 0.938i)3-s + 6.81·7-s + (7.23 + 5.34i)9-s − 7.52i·11-s + 16.2·13-s + 4.11i·17-s + 7.86·19-s + (−19.4 − 6.39i)21-s − 19.5i·23-s + (−15.6 − 22.0i)27-s + 55.8i·29-s − 43.4·31-s + (−7.06 + 21.4i)33-s + 31.5·37-s + (−46.2 − 15.2i)39-s + ⋯ |
L(s) = 1 | + (−0.949 − 0.312i)3-s + 0.973·7-s + (0.804 + 0.594i)9-s − 0.684i·11-s + 1.24·13-s + 0.242i·17-s + 0.413·19-s + (−0.924 − 0.304i)21-s − 0.848i·23-s + (−0.578 − 0.815i)27-s + 1.92i·29-s − 1.40·31-s + (−0.214 + 0.650i)33-s + 0.853·37-s + (−1.18 − 0.390i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.312i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.949 + 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.709272330\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.709272330\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.84 + 0.938i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 6.81T + 49T^{2} \) |
| 11 | \( 1 + 7.52iT - 121T^{2} \) |
| 13 | \( 1 - 16.2T + 169T^{2} \) |
| 17 | \( 1 - 4.11iT - 289T^{2} \) |
| 19 | \( 1 - 7.86T + 361T^{2} \) |
| 23 | \( 1 + 19.5iT - 529T^{2} \) |
| 29 | \( 1 - 55.8iT - 841T^{2} \) |
| 31 | \( 1 + 43.4T + 961T^{2} \) |
| 37 | \( 1 - 31.5T + 1.36e3T^{2} \) |
| 41 | \( 1 - 51.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 51.2T + 1.84e3T^{2} \) |
| 47 | \( 1 - 61.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 82.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 97.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 4.13T + 3.72e3T^{2} \) |
| 67 | \( 1 - 63.1T + 4.48e3T^{2} \) |
| 71 | \( 1 - 40.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 78.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + 51.0T + 6.24e3T^{2} \) |
| 83 | \( 1 - 2.72iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 70.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 3.44T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.541534074873251404971895227935, −8.518432409443774401662562206367, −7.926842227802853852340459128917, −6.91622992515831147980360116218, −6.10326116364784804115133932948, −5.35611391398136129727284127255, −4.52175634397206992705863653721, −3.39254541779735770239184999166, −1.77557911550211113708435618641, −0.864574463470070689545897069593,
0.874106542613344827130321941155, 2.01108314710145762426130274247, 3.75450280055759976934988681340, 4.43727941246556574121871738267, 5.46421587463115504744021138995, 5.99753110476752159950946784548, 7.17996407552618926014437279607, 7.79019393698094659405298785202, 8.930720692918300807973015132011, 9.654777102146736584023015116291