Properties

Label 2-1200-20.19-c2-0-13
Degree $2$
Conductor $1200$
Sign $0.834 - 0.550i$
Analytic cond. $32.6976$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s − 13.2·7-s + 2.99·9-s − 11.4i·11-s + i·13-s + 31.8i·17-s − 13.2i·19-s − 22.8·21-s + 32.2·23-s + 5.19·27-s + 4.10·29-s + 37.4i·31-s − 19.8i·33-s − 17.7i·37-s + 1.73i·39-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.88·7-s + 0.333·9-s − 1.04i·11-s + 0.0769i·13-s + 1.87i·17-s − 0.695i·19-s − 1.09·21-s + 1.40·23-s + 0.192·27-s + 0.141·29-s + 1.20i·31-s − 0.603i·33-s − 0.481i·37-s + 0.0444i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $0.834 - 0.550i$
Analytic conductor: \(32.6976\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1200} (799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1200,\ (\ :1),\ 0.834 - 0.550i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.724932403\)
\(L(\frac12)\) \(\approx\) \(1.724932403\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 1.73T \)
5 \( 1 \)
good7 \( 1 + 13.2T + 49T^{2} \)
11 \( 1 + 11.4iT - 121T^{2} \)
13 \( 1 - iT - 169T^{2} \)
17 \( 1 - 31.8iT - 289T^{2} \)
19 \( 1 + 13.2iT - 361T^{2} \)
23 \( 1 - 32.2T + 529T^{2} \)
29 \( 1 - 4.10T + 841T^{2} \)
31 \( 1 - 37.4iT - 961T^{2} \)
37 \( 1 + 17.7iT - 1.36e3T^{2} \)
41 \( 1 - 53.6T + 1.68e3T^{2} \)
43 \( 1 - 24.8T + 1.84e3T^{2} \)
47 \( 1 - 35.5T + 2.20e3T^{2} \)
53 \( 1 - 89.6iT - 2.80e3T^{2} \)
59 \( 1 + 6.00iT - 3.48e3T^{2} \)
61 \( 1 + 76.7T + 3.72e3T^{2} \)
67 \( 1 - 108.T + 4.48e3T^{2} \)
71 \( 1 + 1.09iT - 5.04e3T^{2} \)
73 \( 1 - 30.2iT - 5.32e3T^{2} \)
79 \( 1 + 2.54iT - 6.24e3T^{2} \)
83 \( 1 - 72.7T + 6.88e3T^{2} \)
89 \( 1 - 96T + 7.92e3T^{2} \)
97 \( 1 - 114. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.246123039902727706400358492193, −9.123744014442149111464235227917, −8.120471461182027544346333373033, −7.03346248922645269801445736726, −6.36878081792317208804822844902, −5.62465319589326997730823994518, −4.12778432973056606441949280341, −3.33659089668741558592167666573, −2.64654183006300153562233437330, −0.923063551153198503014540626477, 0.61293862245930293229243852477, 2.42187580578727596094434023801, 3.10877708945399068011746315529, 4.10098922595302323853720789913, 5.19449636162823422413253859540, 6.33272158444363857912815092547, 7.07493694250296666355683321542, 7.63864781339092016772358497221, 8.966266742985093720629798889162, 9.595935111657475958754628275786

Graph of the $Z$-function along the critical line