L(s) = 1 | + (−1.22 − 1.22i)3-s + (−7.67 + 7.67i)7-s + 2.99i·9-s − 7.79·11-s + (−3.67 − 3.67i)13-s + (−3.34 + 3.34i)17-s + 28.3i·19-s + 18.7·21-s + (−14.4 − 14.4i)23-s + (3.67 − 3.67i)27-s − 43.3i·29-s + 40.7·31-s + (9.55 + 9.55i)33-s + (12.8 − 12.8i)37-s + 9i·39-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−1.09 + 1.09i)7-s + 0.333i·9-s − 0.708·11-s + (−0.282 − 0.282i)13-s + (−0.196 + 0.196i)17-s + 1.49i·19-s + 0.895·21-s + (−0.628 − 0.628i)23-s + (0.136 − 0.136i)27-s − 1.49i·29-s + 1.31·31-s + (0.289 + 0.289i)33-s + (0.348 − 0.348i)37-s + 0.230i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.326 + 0.945i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.326 + 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.7548417418\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7548417418\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (7.67 - 7.67i)T - 49iT^{2} \) |
| 11 | \( 1 + 7.79T + 121T^{2} \) |
| 13 | \( 1 + (3.67 + 3.67i)T + 169iT^{2} \) |
| 17 | \( 1 + (3.34 - 3.34i)T - 289iT^{2} \) |
| 19 | \( 1 - 28.3iT - 361T^{2} \) |
| 23 | \( 1 + (14.4 + 14.4i)T + 529iT^{2} \) |
| 29 | \( 1 + 43.3iT - 841T^{2} \) |
| 31 | \( 1 - 40.7T + 961T^{2} \) |
| 37 | \( 1 + (-12.8 + 12.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 37.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + (36.5 + 36.5i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (52.2 - 52.2i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-47.1 - 47.1i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 82iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 55.4T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-59.2 + 59.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 58.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-21.7 - 21.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 91.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (57.1 + 57.1i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 120. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (103. - 103. i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.673463394669237908930090184315, −8.338518426361826527201513827815, −7.951431522989933796128622494795, −6.67280993970042838402645348450, −6.03119454288081281747690953739, −5.44654856292737170112060758343, −4.18258523079743429189015388735, −2.91675076769961110135853707930, −2.10528376377791410817311469738, −0.32397315696579974703855549052,
0.804139589648096137493068581322, 2.65387740576460835410311137362, 3.60896042948492696472342169615, 4.57582982066390531456740611577, 5.37152177391065093461753563281, 6.64904589432122808647540687937, 6.94069196070718676620393940186, 8.041777574146976160231618449975, 9.122758586279031818696949929515, 9.891196596974555222192664584604