| L(s) = 1 | + (0.912 + 1.47i)3-s + (−1.78 − 1.78i)7-s + (−1.33 + 2.68i)9-s − 4.25i·11-s + (2.90 − 2.90i)13-s + (−0.443 + 0.443i)17-s − 7.74i·19-s + (1 − 4.25i)21-s + (1.94 + 1.94i)23-s + (−5.17 + 0.483i)27-s + 10.0·29-s − 0.372·31-s + (6.26 − 3.88i)33-s + (1.12 + 1.12i)37-s + (6.92 + 1.62i)39-s + ⋯ |
| L(s) = 1 | + (0.526 + 0.850i)3-s + (−0.674 − 0.674i)7-s + (−0.445 + 0.895i)9-s − 1.28i·11-s + (0.805 − 0.805i)13-s + (−0.107 + 0.107i)17-s − 1.77i·19-s + (0.218 − 0.928i)21-s + (0.404 + 0.404i)23-s + (−0.995 + 0.0929i)27-s + 1.87·29-s − 0.0668·31-s + (1.09 − 0.675i)33-s + (0.184 + 0.184i)37-s + (1.10 + 0.260i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.845 + 0.533i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.845 + 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.691369853\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.691369853\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.912 - 1.47i)T \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (1.78 + 1.78i)T + 7iT^{2} \) |
| 11 | \( 1 + 4.25iT - 11T^{2} \) |
| 13 | \( 1 + (-2.90 + 2.90i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.443 - 0.443i)T - 17iT^{2} \) |
| 19 | \( 1 + 7.74iT - 19T^{2} \) |
| 23 | \( 1 + (-1.94 - 1.94i)T + 23iT^{2} \) |
| 29 | \( 1 - 10.0T + 29T^{2} \) |
| 31 | \( 1 + 0.372T + 31T^{2} \) |
| 37 | \( 1 + (-1.12 - 1.12i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.42iT - 41T^{2} \) |
| 43 | \( 1 + (6.68 - 6.68i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.65 + 5.65i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.59 - 7.59i)T + 53iT^{2} \) |
| 59 | \( 1 + 5.34T + 59T^{2} \) |
| 61 | \( 1 + 4.37T + 61T^{2} \) |
| 67 | \( 1 + (1.22 + 1.22i)T + 67iT^{2} \) |
| 71 | \( 1 + 10.0iT - 71T^{2} \) |
| 73 | \( 1 + (7.90 - 7.90i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.74iT - 79T^{2} \) |
| 83 | \( 1 + (-8.04 - 8.04i)T + 83iT^{2} \) |
| 89 | \( 1 + 0.497T + 89T^{2} \) |
| 97 | \( 1 + (6.47 + 6.47i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.659092391690235026487415961988, −8.786394249873002779917748412909, −8.365866655433518386517419102816, −7.24104989845530997254165817846, −6.29568004185642777219062279387, −5.35053312247263364277342931225, −4.35562993882839235088833731237, −3.35086797506525573984825573372, −2.83046980340869994701147314280, −0.72275844543377487449831276911,
1.44787687193921142344397536752, 2.43590775972196229579703053410, 3.48581794239602393495843517635, 4.56866423069954201981510745548, 5.96221807611289813065089513897, 6.50436765683536628107514861972, 7.30963822298788881001538570488, 8.262623754487133212311810207057, 8.900281946953818300495490118752, 9.693646297974380694728642734553