Properties

Label 2-120-15.14-c8-0-3
Degree $2$
Conductor $120$
Sign $-0.723 + 0.690i$
Analytic cond. $48.8854$
Root an. cond. $6.99181$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−24.3 + 77.2i)3-s + (547. + 301. i)5-s + 1.53e3i·7-s + (−5.37e3 − 3.75e3i)9-s − 7.76e3i·11-s + 2.43e4i·13-s + (−3.66e4 + 3.49e4i)15-s − 8.39e4·17-s − 1.15e5·19-s + (−1.18e5 − 3.73e4i)21-s + 1.86e5·23-s + (2.08e5 + 3.30e5i)25-s + (4.21e5 − 3.24e5i)27-s + 9.07e5i·29-s − 1.08e6·31-s + ⋯
L(s)  = 1  + (−0.300 + 0.953i)3-s + (0.875 + 0.483i)5-s + 0.639i·7-s + (−0.819 − 0.572i)9-s − 0.530i·11-s + 0.852i·13-s + (−0.723 + 0.690i)15-s − 1.00·17-s − 0.884·19-s + (−0.610 − 0.192i)21-s + 0.665·23-s + (0.533 + 0.845i)25-s + (0.792 − 0.610i)27-s + 1.28i·29-s − 1.17·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.723 + 0.690i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.723 + 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $-0.723 + 0.690i$
Analytic conductor: \(48.8854\)
Root analytic conductor: \(6.99181\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{120} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 120,\ (\ :4),\ -0.723 + 0.690i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.6320070950\)
\(L(\frac12)\) \(\approx\) \(0.6320070950\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (24.3 - 77.2i)T \)
5 \( 1 + (-547. - 301. i)T \)
good7 \( 1 - 1.53e3iT - 5.76e6T^{2} \)
11 \( 1 + 7.76e3iT - 2.14e8T^{2} \)
13 \( 1 - 2.43e4iT - 8.15e8T^{2} \)
17 \( 1 + 8.39e4T + 6.97e9T^{2} \)
19 \( 1 + 1.15e5T + 1.69e10T^{2} \)
23 \( 1 - 1.86e5T + 7.83e10T^{2} \)
29 \( 1 - 9.07e5iT - 5.00e11T^{2} \)
31 \( 1 + 1.08e6T + 8.52e11T^{2} \)
37 \( 1 - 5.92e4iT - 3.51e12T^{2} \)
41 \( 1 - 3.29e5iT - 7.98e12T^{2} \)
43 \( 1 + 4.48e6iT - 1.16e13T^{2} \)
47 \( 1 + 4.73e5T + 2.38e13T^{2} \)
53 \( 1 + 1.18e7T + 6.22e13T^{2} \)
59 \( 1 + 3.27e6iT - 1.46e14T^{2} \)
61 \( 1 + 2.05e7T + 1.91e14T^{2} \)
67 \( 1 + 3.13e7iT - 4.06e14T^{2} \)
71 \( 1 - 9.40e6iT - 6.45e14T^{2} \)
73 \( 1 + 3.64e7iT - 8.06e14T^{2} \)
79 \( 1 + 4.17e7T + 1.51e15T^{2} \)
83 \( 1 - 2.83e7T + 2.25e15T^{2} \)
89 \( 1 + 1.11e7iT - 3.93e15T^{2} \)
97 \( 1 - 5.09e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46730306769611635665593937379, −11.14148335089233446717722624821, −10.64818957845802724976168297265, −9.262317952587809814178087764995, −8.841185065330107309172215417632, −6.77307628680945095596574131922, −5.85859240089527679192303725712, −4.75766693759900051571097249225, −3.28389712813981384541170910535, −1.97467737155556033485860067052, 0.16608627871058492407984416732, 1.39047954400896949140891242824, 2.52037077116544970956326353418, 4.54869229909500585069498847534, 5.79120865277210205607448915821, 6.77537178070539676814953878025, 7.896557316713802769241891532482, 9.055567262513728979623768596334, 10.32488372828273942983684081620, 11.25894265979981110316976729760

Graph of the $Z$-function along the critical line