Properties

Label 2-120-15.14-c8-0-43
Degree $2$
Conductor $120$
Sign $-0.962 - 0.271i$
Analytic cond. $48.8854$
Root an. cond. $6.99181$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−51.8 + 62.2i)3-s + (−254. − 570. i)5-s − 4.20e3i·7-s + (−1.17e3 − 6.45e3i)9-s + 542. i·11-s − 4.07e4i·13-s + (4.87e4 + 1.37e4i)15-s + 3.12e4·17-s − 2.30e5·19-s + (2.61e5 + 2.18e5i)21-s + 4.65e5·23-s + (−2.60e5 + 2.90e5i)25-s + (4.62e5 + 2.61e5i)27-s + 2.31e5i·29-s − 2.06e5·31-s + ⋯
L(s)  = 1  + (−0.640 + 0.767i)3-s + (−0.407 − 0.913i)5-s − 1.75i·7-s + (−0.179 − 0.983i)9-s + 0.0370i·11-s − 1.42i·13-s + (0.962 + 0.271i)15-s + 0.373·17-s − 1.77·19-s + (1.34 + 1.12i)21-s + 1.66·23-s + (−0.667 + 0.744i)25-s + (0.870 + 0.492i)27-s + 0.326i·29-s − 0.223·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.271i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.962 - 0.271i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $-0.962 - 0.271i$
Analytic conductor: \(48.8854\)
Root analytic conductor: \(6.99181\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{120} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 120,\ (\ :4),\ -0.962 - 0.271i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.6203472693\)
\(L(\frac12)\) \(\approx\) \(0.6203472693\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (51.8 - 62.2i)T \)
5 \( 1 + (254. + 570. i)T \)
good7 \( 1 + 4.20e3iT - 5.76e6T^{2} \)
11 \( 1 - 542. iT - 2.14e8T^{2} \)
13 \( 1 + 4.07e4iT - 8.15e8T^{2} \)
17 \( 1 - 3.12e4T + 6.97e9T^{2} \)
19 \( 1 + 2.30e5T + 1.69e10T^{2} \)
23 \( 1 - 4.65e5T + 7.83e10T^{2} \)
29 \( 1 - 2.31e5iT - 5.00e11T^{2} \)
31 \( 1 + 2.06e5T + 8.52e11T^{2} \)
37 \( 1 + 2.73e6iT - 3.51e12T^{2} \)
41 \( 1 + 2.74e6iT - 7.98e12T^{2} \)
43 \( 1 - 6.38e5iT - 1.16e13T^{2} \)
47 \( 1 - 2.05e6T + 2.38e13T^{2} \)
53 \( 1 + 1.09e7T + 6.22e13T^{2} \)
59 \( 1 + 5.20e6iT - 1.46e14T^{2} \)
61 \( 1 + 7.93e3T + 1.91e14T^{2} \)
67 \( 1 + 2.61e7iT - 4.06e14T^{2} \)
71 \( 1 - 4.61e7iT - 6.45e14T^{2} \)
73 \( 1 - 3.27e7iT - 8.06e14T^{2} \)
79 \( 1 - 9.49e6T + 1.51e15T^{2} \)
83 \( 1 - 6.39e7T + 2.25e15T^{2} \)
89 \( 1 - 4.56e7iT - 3.93e15T^{2} \)
97 \( 1 - 2.57e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90127973311782726070798455618, −10.63758489106177445129727076502, −9.356071599560880957682232624015, −8.120966550953641073781151393917, −6.94334497486081352203199000244, −5.42296382141315652270123781074, −4.41738041359241387871916580251, −3.54224502986619345670494436706, −0.952413013785103944671677767986, −0.22477932365163830049091167028, 1.81676363958034331769516480161, 2.80904161202622234157128145086, 4.74986353278260292379117474786, 6.15617650395003458182631943936, 6.74091640204457073424817177686, 8.126301161690422711020025512551, 9.165100923764972329498710678725, 10.75966765399750052352675092730, 11.59694221595637534844184189230, 12.21606708456217315498147349502

Graph of the $Z$-function along the critical line