L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s + (−2 − 1.73i)7-s + 0.999·8-s + (1 − 1.73i)9-s + (0.499 + 0.866i)10-s + (−1.5 − 2.59i)11-s + (−0.499 + 0.866i)12-s + 5·13-s + (2.5 − 0.866i)14-s − 0.999·15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.223 − 0.387i)5-s + 0.408·6-s + (−0.755 − 0.654i)7-s + 0.353·8-s + (0.333 − 0.577i)9-s + (0.158 + 0.273i)10-s + (−0.452 − 0.783i)11-s + (−0.144 + 0.249i)12-s + 1.38·13-s + (0.668 − 0.231i)14-s − 0.258·15-s + (−0.125 + 0.216i)16-s + (0.121 + 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7938257843\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7938257843\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (2 + 1.73i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5T + 13T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.5 - 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 15T + 71T^{2} \) |
| 73 | \( 1 + (4 + 6.92i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.5 - 4.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.328877823571640727026260111886, −8.621590239878355744016258625236, −7.77082085198205252871094715163, −6.92600743862591216512042072097, −6.07989871208296709085984645399, −5.74525002175527360237520843515, −4.22242418143357386832751609796, −3.38188942981128939894917125433, −1.50088533175702842597432882206, −0.41450889018603080694732154231,
1.71846493348015417851899752911, 2.81830346839543806952181818089, 3.77940333504893175718695285229, 4.86600146019675883093705895174, 5.75567386352598117279405011821, 6.75557318183525624090687748880, 7.64713290658870356831187165119, 8.744263655430953887544854137377, 9.321991346490989700125894919988, 10.27582681940204876303280425635