Properties

Label 2-119-119.118-c4-0-7
Degree $2$
Conductor $119$
Sign $1$
Analytic cond. $12.3010$
Root an. cond. $3.50728$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.794·2-s − 12.4·3-s − 15.3·4-s − 25.8·5-s − 9.85·6-s − 49·7-s − 24.9·8-s + 72.8·9-s − 20.5·10-s + 190.·12-s − 38.9·14-s + 321.·15-s + 226.·16-s − 289·17-s + 57.8·18-s + 398.·20-s + 607.·21-s + 309.·24-s + 45.7·25-s + 101.·27-s + 753.·28-s + 255.·30-s − 1.06e3·31-s + 578.·32-s − 229.·34-s + 1.26e3·35-s − 1.11e3·36-s + ⋯
L(s)  = 1  + 0.198·2-s − 1.37·3-s − 0.960·4-s − 1.03·5-s − 0.273·6-s − 0.999·7-s − 0.389·8-s + 0.898·9-s − 0.205·10-s + 1.32·12-s − 0.198·14-s + 1.42·15-s + 0.883·16-s − 17-s + 0.178·18-s + 0.995·20-s + 1.37·21-s + 0.536·24-s + 0.0732·25-s + 0.139·27-s + 0.960·28-s + 0.283·30-s − 1.10·31-s + 0.564·32-s − 0.198·34-s + 1.03·35-s − 0.863·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119\)    =    \(7 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.3010\)
Root analytic conductor: \(3.50728\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{119} (118, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 119,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.2248027566\)
\(L(\frac12)\) \(\approx\) \(0.2248027566\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 49T \)
17 \( 1 + 289T \)
good2 \( 1 - 0.794T + 16T^{2} \)
3 \( 1 + 12.4T + 81T^{2} \)
5 \( 1 + 25.8T + 625T^{2} \)
11 \( 1 - 1.46e4T^{2} \)
13 \( 1 - 2.85e4T^{2} \)
19 \( 1 - 1.30e5T^{2} \)
23 \( 1 - 2.79e5T^{2} \)
29 \( 1 - 7.07e5T^{2} \)
31 \( 1 + 1.06e3T + 9.23e5T^{2} \)
37 \( 1 - 1.87e6T^{2} \)
41 \( 1 + 116.T + 2.82e6T^{2} \)
43 \( 1 + 2.45e3T + 3.41e6T^{2} \)
47 \( 1 - 4.87e6T^{2} \)
53 \( 1 + 1.30e3T + 7.89e6T^{2} \)
59 \( 1 - 1.21e7T^{2} \)
61 \( 1 - 7.29e3T + 1.38e7T^{2} \)
67 \( 1 + 8.51e3T + 2.01e7T^{2} \)
71 \( 1 - 2.54e7T^{2} \)
73 \( 1 - 5.89e3T + 2.83e7T^{2} \)
79 \( 1 - 3.89e7T^{2} \)
83 \( 1 - 4.74e7T^{2} \)
89 \( 1 - 6.27e7T^{2} \)
97 \( 1 - 39.2T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64774023207891151904048542857, −11.85550643226240237261817943370, −10.89661399005745333913422777583, −9.739855457086075751692008132954, −8.536186171025417220146012218885, −7.03467125075965685902194334241, −5.89622746509511433980313745250, −4.71818078484032232610058284887, −3.61078825164698487611901078283, −0.36086325087826941615964875111, 0.36086325087826941615964875111, 3.61078825164698487611901078283, 4.71818078484032232610058284887, 5.89622746509511433980313745250, 7.03467125075965685902194334241, 8.536186171025417220146012218885, 9.739855457086075751692008132954, 10.89661399005745333913422777583, 11.85550643226240237261817943370, 12.64774023207891151904048542857

Graph of the $Z$-function along the critical line