| L(s) = 1 | + 0.719·2-s + 15.8i·3-s − 15.4·4-s + 29.0i·5-s + 11.3i·6-s + (22.7 + 43.4i)7-s − 22.6·8-s − 168.·9-s + 20.8i·10-s + 143.·11-s − 244. i·12-s + 69.9i·13-s + (16.3 + 31.2i)14-s − 458.·15-s + 231.·16-s + 70.0i·17-s + ⋯ |
| L(s) = 1 | + 0.179·2-s + 1.75i·3-s − 0.967·4-s + 1.16i·5-s + 0.315i·6-s + (0.463 + 0.886i)7-s − 0.353·8-s − 2.08·9-s + 0.208i·10-s + 1.18·11-s − 1.69i·12-s + 0.413i·13-s + (0.0833 + 0.159i)14-s − 2.03·15-s + 0.903·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.886 + 0.463i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.886 + 0.463i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(0.319394 - 1.29991i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.319394 - 1.29991i\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (-22.7 - 43.4i)T \) |
| 17 | \( 1 - 70.0iT \) |
| good | 2 | \( 1 - 0.719T + 16T^{2} \) |
| 3 | \( 1 - 15.8iT - 81T^{2} \) |
| 5 | \( 1 - 29.0iT - 625T^{2} \) |
| 11 | \( 1 - 143.T + 1.46e4T^{2} \) |
| 13 | \( 1 - 69.9iT - 2.85e4T^{2} \) |
| 19 | \( 1 + 504. iT - 1.30e5T^{2} \) |
| 23 | \( 1 + 374.T + 2.79e5T^{2} \) |
| 29 | \( 1 - 1.08e3T + 7.07e5T^{2} \) |
| 31 | \( 1 - 719. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 93.4T + 1.87e6T^{2} \) |
| 41 | \( 1 + 1.10e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 + 2.62e3T + 3.41e6T^{2} \) |
| 47 | \( 1 - 3.62e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 2.60e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 2.46e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 4.79e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 7.03e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 1.81e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 5.16e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 3.53e3T + 3.89e7T^{2} \) |
| 83 | \( 1 + 9.59e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 8.49e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 1.29e4iT - 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.91863303740211481794153879425, −12.03830890401631213227177475038, −11.15421494599779956324408510978, −10.15182266301552199414669234446, −9.221902566144697901696409628992, −8.562959586933219623406349413617, −6.42346615524888421622858852032, −5.09129575809741804129153210620, −4.14039596663794838529726392567, −2.98439024037647912605816708605,
0.62244090988119521457291422924, 1.45389636811814463026147850981, 3.94495420650703647128045475591, 5.34275880349747415578431030576, 6.62927048385634071733604623286, 8.052175582728597442904952582282, 8.469888211608606017367353291180, 9.889988090367946954781837043462, 11.77311010271389176493168400685, 12.36167140248600273556055027163