| L(s) = 1 | + (1.36 − 2.36i)2-s + (0.673 + 1.16i)3-s + (−2.71 − 4.69i)4-s + (1.09 − 1.89i)5-s + 3.66·6-s + (2.19 − 1.47i)7-s − 9.33·8-s + (0.593 − 1.02i)9-s + (−2.98 − 5.16i)10-s + (−0.524 − 0.907i)11-s + (3.65 − 6.32i)12-s + (−0.484 − 7.19i)14-s + 2.94·15-s + (−7.29 + 12.6i)16-s + (2.64 + 4.58i)17-s + (−1.61 − 2.80i)18-s + ⋯ |
| L(s) = 1 | + (0.963 − 1.66i)2-s + (0.388 + 0.673i)3-s + (−1.35 − 2.34i)4-s + (0.489 − 0.847i)5-s + 1.49·6-s + (0.830 − 0.557i)7-s − 3.30·8-s + (0.197 − 0.342i)9-s + (−0.942 − 1.63i)10-s + (−0.158 − 0.273i)11-s + (1.05 − 1.82i)12-s + (−0.129 − 1.92i)14-s + 0.760·15-s + (−1.82 + 3.16i)16-s + (0.641 + 1.11i)17-s + (−0.381 − 0.660i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.231447632\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.231447632\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (-2.19 + 1.47i)T \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-1.36 + 2.36i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.673 - 1.16i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.09 + 1.89i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.524 + 0.907i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.64 - 4.58i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.378 + 0.655i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.326 - 0.566i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.10T + 29T^{2} \) |
| 31 | \( 1 + (-0.513 - 0.890i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.44 - 9.43i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 7.32T + 41T^{2} \) |
| 43 | \( 1 - 0.887T + 43T^{2} \) |
| 47 | \( 1 + (-1.16 + 2.02i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.44 + 4.23i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.524 + 0.907i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.24 + 10.8i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.23 - 3.87i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.60T + 71T^{2} \) |
| 73 | \( 1 + (4.14 + 7.17i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.07 - 1.85i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.66T + 83T^{2} \) |
| 89 | \( 1 + (2.88 - 4.99i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 2.88T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.750516152869429895139976960843, −8.922118673917951903893176814867, −8.220322532797801705357406876210, −6.47359161461101039552038908704, −5.26194533156077861346746754283, −4.91122921258198563998998131638, −3.88894307702409802039179249506, −3.35349231667439640073397596676, −1.87341689559828041142864780259, −1.07337059955423013253447857567,
2.20831483594276703939584522927, 3.14082863159984650513535347444, 4.46436200292134322275990222020, 5.31630044189502091834854137579, 5.94449818976102534770993433707, 7.12247315923743586927921456165, 7.26079201018480964194537884935, 8.153970935715507794690770196023, 8.838076874984883636790511634460, 9.904134907134233172180196613405