L(s) = 1 | + (1.35 − 0.409i)2-s + i·3-s + (1.66 − 1.10i)4-s − 2.50·5-s + (0.409 + 1.35i)6-s + (1.79 − 2.18i)8-s − 9-s + (−3.38 + 1.02i)10-s − 5.67·11-s + (1.10 + 1.66i)12-s − 5.31·13-s − 2.50i·15-s + (1.53 − 3.69i)16-s − 0.454i·17-s + (−1.35 + 0.409i)18-s + 3.69i·19-s + ⋯ |
L(s) = 1 | + (0.957 − 0.289i)2-s + 0.577i·3-s + (0.832 − 0.554i)4-s − 1.11·5-s + (0.167 + 0.552i)6-s + (0.635 − 0.771i)8-s − 0.333·9-s + (−1.07 + 0.324i)10-s − 1.71·11-s + (0.320 + 0.480i)12-s − 1.47·13-s − 0.646i·15-s + (0.384 − 0.922i)16-s − 0.110i·17-s + (−0.319 + 0.0965i)18-s + 0.847i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0247i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1362892118\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1362892118\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.35 + 0.409i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2.50T + 5T^{2} \) |
| 11 | \( 1 + 5.67T + 11T^{2} \) |
| 13 | \( 1 + 5.31T + 13T^{2} \) |
| 17 | \( 1 + 0.454iT - 17T^{2} \) |
| 19 | \( 1 - 3.69iT - 19T^{2} \) |
| 23 | \( 1 + 5.12iT - 23T^{2} \) |
| 29 | \( 1 - 2.57iT - 29T^{2} \) |
| 31 | \( 1 + 6.00T + 31T^{2} \) |
| 37 | \( 1 - 9.01iT - 37T^{2} \) |
| 41 | \( 1 + 4.65iT - 41T^{2} \) |
| 43 | \( 1 - 3.66T + 43T^{2} \) |
| 47 | \( 1 - 0.957T + 47T^{2} \) |
| 53 | \( 1 + 6.24iT - 53T^{2} \) |
| 59 | \( 1 + 10.1iT - 59T^{2} \) |
| 61 | \( 1 - 5.00T + 61T^{2} \) |
| 67 | \( 1 + 9.30T + 67T^{2} \) |
| 71 | \( 1 - 7.35iT - 71T^{2} \) |
| 73 | \( 1 - 6.85iT - 73T^{2} \) |
| 79 | \( 1 - 8.91iT - 79T^{2} \) |
| 83 | \( 1 + 1.96iT - 83T^{2} \) |
| 89 | \( 1 + 6.82iT - 89T^{2} \) |
| 97 | \( 1 + 3.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.755751961920723700150581539342, −8.333854074288789301559372617144, −7.65399763303151078497790699388, −6.90627338220294639528046613406, −5.54540969948244288693010313967, −4.95788405059916545540716677948, −4.17112443103935997645664093448, −3.18909414242931029412059621872, −2.33246383881114962340853136439, −0.03781899413295415584395633584,
2.26150164460901292615201124232, 3.04448246965385196599862403532, 4.21238618566345381605548591766, 5.10004619360485878469197068672, 5.79386165044088812093343240100, 7.17564771903040129899513015998, 7.52819210038636719672005092183, 7.980550999058790706728044684643, 9.220659775972575471520119392205, 10.51728358628270417937249523537