L(s) = 1 | + (0.765 + 1.18i)2-s − i·3-s + (−0.828 + 1.82i)4-s + 4.17·5-s + (1.18 − 0.765i)6-s + (−2.79 + 0.407i)8-s − 9-s + (3.19 + 4.96i)10-s + 1.71·11-s + (1.82 + 0.828i)12-s + 1.54·13-s − 4.17i·15-s + (−2.62 − 3.01i)16-s − 2.33i·17-s + (−0.765 − 1.18i)18-s + 7.04i·19-s + ⋯ |
L(s) = 1 | + (0.541 + 0.840i)2-s − 0.577i·3-s + (−0.414 + 0.910i)4-s + 1.86·5-s + (0.485 − 0.312i)6-s + (−0.989 + 0.144i)8-s − 0.333·9-s + (1.01 + 1.57i)10-s + 0.515·11-s + (0.525 + 0.239i)12-s + 0.427·13-s − 1.07i·15-s + (−0.656 − 0.754i)16-s − 0.565i·17-s + (−0.180 − 0.280i)18-s + 1.61i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.538 - 0.842i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.538 - 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.900404622\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.900404622\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.765 - 1.18i)T \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 4.17T + 5T^{2} \) |
| 11 | \( 1 - 1.71T + 11T^{2} \) |
| 13 | \( 1 - 1.54T + 13T^{2} \) |
| 17 | \( 1 + 2.33iT - 17T^{2} \) |
| 19 | \( 1 - 7.04iT - 19T^{2} \) |
| 23 | \( 1 - 0.468iT - 23T^{2} \) |
| 29 | \( 1 - 3.33iT - 29T^{2} \) |
| 31 | \( 1 - 3.16T + 31T^{2} \) |
| 37 | \( 1 + 8.94iT - 37T^{2} \) |
| 41 | \( 1 + 5.31iT - 41T^{2} \) |
| 43 | \( 1 + 3.42T + 43T^{2} \) |
| 47 | \( 1 + 5.90T + 47T^{2} \) |
| 53 | \( 1 + 1.56iT - 53T^{2} \) |
| 59 | \( 1 - 6.08iT - 59T^{2} \) |
| 61 | \( 1 - 9.11T + 61T^{2} \) |
| 67 | \( 1 + 7.47T + 67T^{2} \) |
| 71 | \( 1 + 3.49iT - 71T^{2} \) |
| 73 | \( 1 - 14.5iT - 73T^{2} \) |
| 79 | \( 1 - 1.68iT - 79T^{2} \) |
| 83 | \( 1 - 2.72iT - 83T^{2} \) |
| 89 | \( 1 - 2.12iT - 89T^{2} \) |
| 97 | \( 1 + 1.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.674841710476821683555376399933, −8.996762415177237000742271372506, −8.219461498487626220283853718538, −7.11561216769435070476013277212, −6.45752243668670704589321559087, −5.75845791209259478472743648594, −5.23398520589589881109500230694, −3.83810418849464244882000453334, −2.62581539940560910569940304754, −1.49688844230620965316665564920,
1.27210105846788348868238872391, 2.35884077473888612108851450558, 3.24470774079113460504375529694, 4.56946257867462628983449501345, 5.16294777271592441070561294827, 6.22064447910411851369436238277, 6.53433298286073310773753960944, 8.501185822847722587127882749099, 9.197299768410065830602719736355, 9.802363240514228018380049370871