L(s) = 1 | + (1.72 − 0.188i)3-s − 4.01·5-s + (2.92 − 0.650i)9-s + 3.77i·11-s − 4.48i·13-s + (−6.91 + 0.758i)15-s + 4.11·17-s − 6.57i·19-s − 5.01i·23-s + 11.1·25-s + (4.91 − 1.67i)27-s − 1.23i·29-s − 0.934i·31-s + (0.712 + 6.49i)33-s + 2.02·37-s + ⋯ |
L(s) = 1 | + (0.994 − 0.109i)3-s − 1.79·5-s + (0.976 − 0.216i)9-s + 1.13i·11-s − 1.24i·13-s + (−1.78 + 0.195i)15-s + 0.999·17-s − 1.50i·19-s − 1.04i·23-s + 2.22·25-s + (0.946 − 0.322i)27-s − 0.228i·29-s − 0.167i·31-s + (0.124 + 1.13i)33-s + 0.332·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.595805889\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.595805889\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.72 + 0.188i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4.01T + 5T^{2} \) |
| 11 | \( 1 - 3.77iT - 11T^{2} \) |
| 13 | \( 1 + 4.48iT - 13T^{2} \) |
| 17 | \( 1 - 4.11T + 17T^{2} \) |
| 19 | \( 1 + 6.57iT - 19T^{2} \) |
| 23 | \( 1 + 5.01iT - 23T^{2} \) |
| 29 | \( 1 + 1.23iT - 29T^{2} \) |
| 31 | \( 1 + 0.934iT - 31T^{2} \) |
| 37 | \( 1 - 2.02T + 37T^{2} \) |
| 41 | \( 1 - 2.21T + 41T^{2} \) |
| 43 | \( 1 + 3.14T + 43T^{2} \) |
| 47 | \( 1 - 5.85T + 47T^{2} \) |
| 53 | \( 1 + 4.56iT - 53T^{2} \) |
| 59 | \( 1 + 1.96T + 59T^{2} \) |
| 61 | \( 1 + 9.24iT - 61T^{2} \) |
| 67 | \( 1 - 7.76T + 67T^{2} \) |
| 71 | \( 1 - 7.97iT - 71T^{2} \) |
| 73 | \( 1 + 14.8iT - 73T^{2} \) |
| 79 | \( 1 - 3.70T + 79T^{2} \) |
| 83 | \( 1 + 9.15T + 83T^{2} \) |
| 89 | \( 1 + 13.0T + 89T^{2} \) |
| 97 | \( 1 - 7.06iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.548290440852545968775876487108, −8.584351168551879279819102432799, −7.940161451625112332994070395436, −7.43944797689701717047279253776, −6.71982094626067800167110259207, −5.01130026217328111368455478864, −4.27989401602941617689611655646, −3.38479773528111422061443005617, −2.55335846439121026076186188528, −0.70018735682172447747636748699,
1.32382949346557656158618974032, 3.03303527697273413761503404280, 3.74574700132237882368766843813, 4.27096991539990531828399939165, 5.63458300774574447808397521771, 6.94698905309635410405210441988, 7.66501198478391187433666037098, 8.221747220038447585542836962850, 8.859490116050501633555585764996, 9.775490328670132973825026044282