L(s) = 1 | + (1.71 + 0.238i)3-s + 1.32·5-s + (2.88 + 0.817i)9-s − 2.81i·11-s − 2.52i·13-s + (2.27 + 0.315i)15-s + 3.26·17-s − 5.73i·19-s − 4.25i·23-s − 3.24·25-s + (4.75 + 2.09i)27-s + 4.75i·29-s + 9.10i·31-s + (0.669 − 4.82i)33-s + 11.2·37-s + ⋯ |
L(s) = 1 | + (0.990 + 0.137i)3-s + 0.592·5-s + (0.962 + 0.272i)9-s − 0.847i·11-s − 0.701i·13-s + (0.586 + 0.0814i)15-s + 0.791·17-s − 1.31i·19-s − 0.887i·23-s − 0.649·25-s + (0.915 + 0.402i)27-s + 0.883i·29-s + 1.63i·31-s + (0.116 − 0.839i)33-s + 1.85·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.667373979\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.667373979\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.71 - 0.238i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.32T + 5T^{2} \) |
| 11 | \( 1 + 2.81iT - 11T^{2} \) |
| 13 | \( 1 + 2.52iT - 13T^{2} \) |
| 17 | \( 1 - 3.26T + 17T^{2} \) |
| 19 | \( 1 + 5.73iT - 19T^{2} \) |
| 23 | \( 1 + 4.25iT - 23T^{2} \) |
| 29 | \( 1 - 4.75iT - 29T^{2} \) |
| 31 | \( 1 - 9.10iT - 31T^{2} \) |
| 37 | \( 1 - 11.2T + 37T^{2} \) |
| 41 | \( 1 + 10.0T + 41T^{2} \) |
| 43 | \( 1 - 9.48T + 43T^{2} \) |
| 47 | \( 1 + 1.48T + 47T^{2} \) |
| 53 | \( 1 - 12.0iT - 53T^{2} \) |
| 59 | \( 1 + 12.8T + 59T^{2} \) |
| 61 | \( 1 + 2.34iT - 61T^{2} \) |
| 67 | \( 1 + 0.130T + 67T^{2} \) |
| 71 | \( 1 - 0.875iT - 71T^{2} \) |
| 73 | \( 1 - 6.44iT - 73T^{2} \) |
| 79 | \( 1 - 5.93T + 79T^{2} \) |
| 83 | \( 1 + 0.398T + 83T^{2} \) |
| 89 | \( 1 + 5.75T + 89T^{2} \) |
| 97 | \( 1 - 5.36iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.597953276613385794045010735716, −8.928700573927394611177845683273, −8.229675267414690608146540328830, −7.40648356656806793512795011043, −6.43834116842103955579179968089, −5.45225188978231209105729255437, −4.50142194522914773019158148314, −3.24901180716527282892262441525, −2.64467060857497976998519801968, −1.19089643894046429373155007814,
1.57480174789616319405796761847, 2.33755707268523996245838970395, 3.64045057982640857332828740894, 4.40161625439740929727259888386, 5.70220180059322607295041069698, 6.49594027020944637043494226080, 7.73478132008010929908308278399, 7.87166883576451156700819944037, 9.247304053457326928352893233498, 9.698140128210027557503829259200