L(s) = 1 | + (−0.0935 − 1.72i)3-s − 3.34·5-s + (−2.98 + 0.323i)9-s − 3.53i·11-s − 5.57i·13-s + (0.312 + 5.78i)15-s − 0.803·17-s − 0.615i·19-s + 8.47i·23-s + 6.17·25-s + (0.838 + 5.12i)27-s + 7.09i·29-s + 3.25i·31-s + (−6.10 + 0.330i)33-s + 7.31·37-s + ⋯ |
L(s) = 1 | + (−0.0540 − 0.998i)3-s − 1.49·5-s + (−0.994 + 0.107i)9-s − 1.06i·11-s − 1.54i·13-s + (0.0807 + 1.49i)15-s − 0.194·17-s − 0.141i·19-s + 1.76i·23-s + 1.23·25-s + (0.161 + 0.986i)27-s + 1.31i·29-s + 0.584i·31-s + (−1.06 + 0.0575i)33-s + 1.20·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.209 - 0.977i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.209 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.02447361472\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02447361472\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.0935 + 1.72i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 3.34T + 5T^{2} \) |
| 11 | \( 1 + 3.53iT - 11T^{2} \) |
| 13 | \( 1 + 5.57iT - 13T^{2} \) |
| 17 | \( 1 + 0.803T + 17T^{2} \) |
| 19 | \( 1 + 0.615iT - 19T^{2} \) |
| 23 | \( 1 - 8.47iT - 23T^{2} \) |
| 29 | \( 1 - 7.09iT - 29T^{2} \) |
| 31 | \( 1 - 3.25iT - 31T^{2} \) |
| 37 | \( 1 - 7.31T + 37T^{2} \) |
| 41 | \( 1 + 10.8T + 41T^{2} \) |
| 43 | \( 1 + 6.16T + 43T^{2} \) |
| 47 | \( 1 + 7.19T + 47T^{2} \) |
| 53 | \( 1 - 2.45iT - 53T^{2} \) |
| 59 | \( 1 - 8.40T + 59T^{2} \) |
| 61 | \( 1 - 2.68iT - 61T^{2} \) |
| 67 | \( 1 + 4.00T + 67T^{2} \) |
| 71 | \( 1 + 6.75iT - 71T^{2} \) |
| 73 | \( 1 - 10.9iT - 73T^{2} \) |
| 79 | \( 1 + 9.97T + 79T^{2} \) |
| 83 | \( 1 + 11.6T + 83T^{2} \) |
| 89 | \( 1 - 9.76T + 89T^{2} \) |
| 97 | \( 1 + 13.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14079530599958839625096996462, −8.720889885981034110560715312658, −8.272274411958065270594352481875, −7.58809616948480166540631552088, −6.93321804845230275013031122344, −5.81084339647323363851852898943, −5.04229239306340526507327189187, −3.47466052022910432135595560324, −3.09495818703251792206445063773, −1.21638619127873157898236953523,
0.01173520026271125750364017723, 2.29622438085860213095388388761, 3.62767401677175862224529644787, 4.44313104804493828609602568135, 4.69444754995506294305048746092, 6.29347360285304998106763517914, 7.05375027066765419894029432969, 8.099836386698885093148234409796, 8.662967942500558684518795714896, 9.650662127554368409781432197854