L(s) = 1 | + i·2-s − 4-s + (2.18 + 0.482i)5-s + 2.10·7-s − i·8-s + (−0.482 + 2.18i)10-s + (1.24 + 1.24i)11-s + (−3.37 + 1.25i)13-s + 2.10i·14-s + 16-s + (1.54 + 1.54i)17-s + (1.19 + 1.19i)19-s + (−2.18 − 0.482i)20-s + (−1.24 + 1.24i)22-s + (2.88 − 2.88i)23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.976 + 0.215i)5-s + 0.796·7-s − 0.353i·8-s + (−0.152 + 0.690i)10-s + (0.374 + 0.374i)11-s + (−0.937 + 0.348i)13-s + 0.563i·14-s + 0.250·16-s + (0.373 + 0.373i)17-s + (0.274 + 0.274i)19-s + (−0.488 − 0.107i)20-s + (−0.264 + 0.264i)22-s + (0.600 − 0.600i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.121 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.121 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.010865913\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.010865913\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.18 - 0.482i)T \) |
| 13 | \( 1 + (3.37 - 1.25i)T \) |
good | 7 | \( 1 - 2.10T + 7T^{2} \) |
| 11 | \( 1 + (-1.24 - 1.24i)T + 11iT^{2} \) |
| 17 | \( 1 + (-1.54 - 1.54i)T + 17iT^{2} \) |
| 19 | \( 1 + (-1.19 - 1.19i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.88 + 2.88i)T - 23iT^{2} \) |
| 29 | \( 1 + 0.655iT - 29T^{2} \) |
| 31 | \( 1 + (5.01 - 5.01i)T - 31iT^{2} \) |
| 37 | \( 1 - 6.16T + 37T^{2} \) |
| 41 | \( 1 + (-5.07 + 5.07i)T - 41iT^{2} \) |
| 43 | \( 1 + (3.01 - 3.01i)T - 43iT^{2} \) |
| 47 | \( 1 - 9.52T + 47T^{2} \) |
| 53 | \( 1 + (3.88 + 3.88i)T + 53iT^{2} \) |
| 59 | \( 1 + (-1.87 + 1.87i)T - 59iT^{2} \) |
| 61 | \( 1 - 4.35T + 61T^{2} \) |
| 67 | \( 1 - 7.11iT - 67T^{2} \) |
| 71 | \( 1 + (1.46 - 1.46i)T - 71iT^{2} \) |
| 73 | \( 1 - 14.7iT - 73T^{2} \) |
| 79 | \( 1 + 1.75iT - 79T^{2} \) |
| 83 | \( 1 + 13.9T + 83T^{2} \) |
| 89 | \( 1 + (-1.31 + 1.31i)T - 89iT^{2} \) |
| 97 | \( 1 - 6.58iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.798569783932762373508427192832, −9.159612909866021817238178548273, −8.301790188515535310357223299883, −7.33234962486840577905531377280, −6.74321395936533106972560622803, −5.70188941170332486361384762300, −5.05626046148250977940370422885, −4.11311462902459962697585219277, −2.61114373192204733821753376314, −1.43241936094126426826100236921,
1.00319686212874187154002620173, 2.13244754830504347311662466894, 3.10031621602421912698115146376, 4.45610139480457382912243347146, 5.23293742845569466229620613908, 5.94999255675607729033547740990, 7.25143097842195586865904374058, 8.039378343379673835411745922545, 9.164879260504983584293797653771, 9.490252749849414923521223195978