L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.137 + 2.23i)5-s + (−1.96 + 1.96i)7-s + (0.707 + 0.707i)8-s + (−1.67 − 1.48i)10-s + (2.64 − 2.64i)11-s + (−0.770 + 3.52i)13-s − 2.77i·14-s − 1.00·16-s − 5.46i·17-s + (−5.64 + 5.64i)19-s + (2.23 − 0.137i)20-s + 3.74i·22-s + 6.48i·23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.0613 + 0.998i)5-s + (−0.742 + 0.742i)7-s + (0.250 + 0.250i)8-s + (−0.529 − 0.468i)10-s + (0.797 − 0.797i)11-s + (−0.213 + 0.976i)13-s − 0.742i·14-s − 0.250·16-s − 1.32i·17-s + (−1.29 + 1.29i)19-s + (0.499 − 0.0306i)20-s + 0.797i·22-s + 1.35i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.952 + 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.952 + 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5414051445\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5414051445\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.137 - 2.23i)T \) |
| 13 | \( 1 + (0.770 - 3.52i)T \) |
good | 7 | \( 1 + (1.96 - 1.96i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.64 + 2.64i)T - 11iT^{2} \) |
| 17 | \( 1 + 5.46iT - 17T^{2} \) |
| 19 | \( 1 + (5.64 - 5.64i)T - 19iT^{2} \) |
| 23 | \( 1 - 6.48iT - 23T^{2} \) |
| 29 | \( 1 - 2.74iT - 29T^{2} \) |
| 31 | \( 1 + (-0.945 + 0.945i)T - 31iT^{2} \) |
| 37 | \( 1 + (-6.10 + 6.10i)T - 37iT^{2} \) |
| 41 | \( 1 + (5.19 + 5.19i)T + 41iT^{2} \) |
| 43 | \( 1 + 1.08T + 43T^{2} \) |
| 47 | \( 1 + (-0.108 - 0.108i)T + 47iT^{2} \) |
| 53 | \( 1 + 12.5T + 53T^{2} \) |
| 59 | \( 1 + (-9.67 + 9.67i)T - 59iT^{2} \) |
| 61 | \( 1 + 11.6T + 61T^{2} \) |
| 67 | \( 1 + (4.45 + 4.45i)T + 67iT^{2} \) |
| 71 | \( 1 + (-8.97 - 8.97i)T + 71iT^{2} \) |
| 73 | \( 1 + (7.14 - 7.14i)T - 73iT^{2} \) |
| 79 | \( 1 + 17.7T + 79T^{2} \) |
| 83 | \( 1 + (1.82 - 1.82i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2.49 + 2.49i)T - 89iT^{2} \) |
| 97 | \( 1 + (0.837 + 0.837i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.912185160900545862409320286893, −9.422753746574716791248322431200, −8.722815867160391523927568095882, −7.66998901785320292713096004122, −6.81275705815568092662388355383, −6.24654915503892389021254174266, −5.53917076531415168976753803528, −4.03921778409641983136732692817, −3.04408121099930846851494835368, −1.85765848493159514014033742062,
0.27327544779496697662048845862, 1.53764432997862317078783800248, 2.86739271832808791823658528554, 4.18470482864569868397521338112, 4.61480243690928878412611741942, 6.17451270273036544636408904722, 6.81708973858486900211072986165, 7.984020035836678346136958011473, 8.576477893553896408484314566407, 9.407339880349982112513499988644