L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (2.23 + 0.137i)5-s + (−3.64 + 3.64i)7-s + (−0.707 − 0.707i)8-s + (1.67 − 1.48i)10-s + (−0.550 + 0.550i)11-s + (−2.57 + 2.52i)13-s + 5.14i·14-s − 1.00·16-s + 3.92i·17-s + (−0.0343 + 0.0343i)19-s + (0.137 − 2.23i)20-s + 0.778i·22-s + 5.25i·23-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (0.998 + 0.0613i)5-s + (−1.37 + 1.37i)7-s + (−0.250 − 0.250i)8-s + (0.529 − 0.468i)10-s + (−0.165 + 0.165i)11-s + (−0.714 + 0.699i)13-s + 1.37i·14-s − 0.250·16-s + 0.951i·17-s + (−0.00788 + 0.00788i)19-s + (0.0306 − 0.499i)20-s + 0.165i·22-s + 1.09i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.608147611\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.608147611\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 - 0.137i)T \) |
| 13 | \( 1 + (2.57 - 2.52i)T \) |
good | 7 | \( 1 + (3.64 - 3.64i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.550 - 0.550i)T - 11iT^{2} \) |
| 17 | \( 1 - 3.92iT - 17T^{2} \) |
| 19 | \( 1 + (0.0343 - 0.0343i)T - 19iT^{2} \) |
| 23 | \( 1 - 5.25iT - 23T^{2} \) |
| 29 | \( 1 + 2.61iT - 29T^{2} \) |
| 31 | \( 1 + (1.75 - 1.75i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.40 - 3.40i)T - 37iT^{2} \) |
| 41 | \( 1 + (2.00 + 2.00i)T + 41iT^{2} \) |
| 43 | \( 1 - 8.65T + 43T^{2} \) |
| 47 | \( 1 + (-3.70 - 3.70i)T + 47iT^{2} \) |
| 53 | \( 1 + 7.17T + 53T^{2} \) |
| 59 | \( 1 + (6.80 - 6.80i)T - 59iT^{2} \) |
| 61 | \( 1 - 10.8T + 61T^{2} \) |
| 67 | \( 1 + (9.45 + 9.45i)T + 67iT^{2} \) |
| 71 | \( 1 + (-7.43 - 7.43i)T + 71iT^{2} \) |
| 73 | \( 1 + (-6.06 + 6.06i)T - 73iT^{2} \) |
| 79 | \( 1 + 1.13T + 79T^{2} \) |
| 83 | \( 1 + (6.10 - 6.10i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5.69 + 5.69i)T - 89iT^{2} \) |
| 97 | \( 1 + (0.250 + 0.250i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.788389887934483727970754379926, −9.402848539994797538207018508155, −8.681041649593476960709250925923, −7.19026172090333575002447450735, −6.22350068160950469372132624548, −5.81331662057992539352028241325, −4.90218514606533159777366050747, −3.55103258444018738606595354919, −2.61830140400728014244014810105, −1.84456275480062765596226644891,
0.54935198989425057593209987218, 2.55976717442209992163567182457, 3.40278071184095211324231099516, 4.53236311582198875761039388760, 5.44364617931489084637241654946, 6.34675132365039509814615577697, 6.99172185176013460811678945681, 7.65204178019845911338389454332, 8.924166820382800725353257107300, 9.698674569428722206760883479118