L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (1.78 − 1.34i)5-s + (2.75 + 2.75i)7-s + (0.707 − 0.707i)8-s + (−2.21 − 0.311i)10-s + (−3.15 − 3.15i)11-s + (−2.69 − 2.39i)13-s − 3.88i·14-s − 1.00·16-s − 5.01i·17-s + (−2.53 − 2.53i)19-s + (1.34 + 1.78i)20-s + 4.45i·22-s + 4.34i·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.798 − 0.601i)5-s + (1.03 + 1.03i)7-s + (0.250 − 0.250i)8-s + (−0.700 − 0.0983i)10-s + (−0.950 − 0.950i)11-s + (−0.747 − 0.664i)13-s − 1.03i·14-s − 0.250·16-s − 1.21i·17-s + (−0.581 − 0.581i)19-s + (0.300 + 0.399i)20-s + 0.950i·22-s + 0.905i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.203 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.203 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.324858808\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.324858808\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.78 + 1.34i)T \) |
| 13 | \( 1 + (2.69 + 2.39i)T \) |
good | 7 | \( 1 + (-2.75 - 2.75i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.15 + 3.15i)T + 11iT^{2} \) |
| 17 | \( 1 + 5.01iT - 17T^{2} \) |
| 19 | \( 1 + (2.53 + 2.53i)T + 19iT^{2} \) |
| 23 | \( 1 - 4.34iT - 23T^{2} \) |
| 29 | \( 1 + 5.70iT - 29T^{2} \) |
| 31 | \( 1 + (3.60 + 3.60i)T + 31iT^{2} \) |
| 37 | \( 1 + (-4.13 - 4.13i)T + 37iT^{2} \) |
| 41 | \( 1 + (-8.67 + 8.67i)T - 41iT^{2} \) |
| 43 | \( 1 - 9.44T + 43T^{2} \) |
| 47 | \( 1 + (-2.13 + 2.13i)T - 47iT^{2} \) |
| 53 | \( 1 + 3.21T + 53T^{2} \) |
| 59 | \( 1 + (-8.59 - 8.59i)T + 59iT^{2} \) |
| 61 | \( 1 + 2.76T + 61T^{2} \) |
| 67 | \( 1 + (4.81 - 4.81i)T - 67iT^{2} \) |
| 71 | \( 1 + (-4.04 + 4.04i)T - 71iT^{2} \) |
| 73 | \( 1 + (-0.0463 - 0.0463i)T + 73iT^{2} \) |
| 79 | \( 1 + 3.04T + 79T^{2} \) |
| 83 | \( 1 + (8.43 + 8.43i)T + 83iT^{2} \) |
| 89 | \( 1 + (-8.57 - 8.57i)T + 89iT^{2} \) |
| 97 | \( 1 + (-5.09 + 5.09i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.384941081802291867371924768325, −8.921415639277850216736317083686, −8.059681101394934426108869655717, −7.44930103089215538158906476753, −5.79933368853422223089060758632, −5.41621769079347832809791905654, −4.46318738252323438771939334808, −2.69702211916560950772165809512, −2.26259940314657391519902799250, −0.67740648760359321086712771429,
1.53641687931469491383209801913, 2.40311933762111553406452661937, 4.17160256227386847745680721711, 4.91812138758908861973400597146, 5.95346886584702510534139090233, 6.88742956603539323106816709631, 7.51408518662944076206109050195, 8.176274207449467890049480707756, 9.271828541368443580681573006576, 10.05957844928958610459594067833