L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−1.5 − 0.866i)6-s + (−1 − 1.73i)7-s + 0.999·8-s + (1.5 − 2.59i)9-s − 0.999·10-s + (−0.5 − 0.866i)11-s + 1.73i·12-s + (0.5 − 0.866i)13-s + (−0.999 + 1.73i)14-s − 1.73i·15-s + (−0.5 − 0.866i)16-s + 5·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.866 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (−0.612 − 0.353i)6-s + (−0.377 − 0.654i)7-s + 0.353·8-s + (0.5 − 0.866i)9-s − 0.316·10-s + (−0.150 − 0.261i)11-s + 0.499i·12-s + (0.138 − 0.240i)13-s + (−0.267 + 0.462i)14-s − 0.447i·15-s + (−0.125 − 0.216i)16-s + 1.21·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.720981154\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.720981154\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (1 + 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 5T + 17T^{2} \) |
| 19 | \( 1 - 3T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4 + 6.92i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3 - 5.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 8T + 37T^{2} \) |
| 41 | \( 1 + (3.5 - 6.06i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.5 + 4.33i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6 - 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + (-2.5 + 4.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7 + 12.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.5 + 12.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6 - 10.3i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + (-6.5 - 11.2i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.542733364060192697479540794926, −8.705762549498479129573308356160, −7.88181439842747759055738872485, −7.33639120206070033381945123611, −6.23337387612351573109090487188, −5.06591458243817935201487163011, −3.70789082175443550073615353591, −3.19682486438564950890669974157, −1.86347692023748648719539082093, −0.77997820214502987274995757428,
1.76990634322557225197324702088, 2.98278483395025105590938094060, 3.86820911471094054670068148027, 5.22731937787428209721603290473, 5.77299585749420895778709015082, 7.13771498889159458550506118884, 7.51040352647099975014178989990, 8.728944802199760953130258409130, 9.050189613719278429468195452912, 10.04813052320260542104036511816