L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (1.67 − 1.48i)5-s + (−1.56 + 0.903i)7-s + 0.999i·8-s + (2.19 − 0.445i)10-s + (3.22 − 5.58i)11-s + (1.98 + 3.01i)13-s − 1.80·14-s + (−0.5 + 0.866i)16-s + (0.416 − 0.240i)17-s + (−3.14 − 5.44i)19-s + (2.12 + 0.710i)20-s + (5.58 − 3.22i)22-s + (6.16 + 3.55i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.749 − 0.662i)5-s + (−0.591 + 0.341i)7-s + 0.353i·8-s + (0.692 − 0.140i)10-s + (0.971 − 1.68i)11-s + (0.549 + 0.835i)13-s − 0.482·14-s + (−0.125 + 0.216i)16-s + (0.101 − 0.0583i)17-s + (−0.721 − 1.24i)19-s + (0.474 + 0.158i)20-s + (1.18 − 0.686i)22-s + (1.28 + 0.742i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.693463137\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.693463137\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.67 + 1.48i)T \) |
| 13 | \( 1 + (-1.98 - 3.01i)T \) |
good | 7 | \( 1 + (1.56 - 0.903i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.22 + 5.58i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.416 + 0.240i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.14 + 5.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.16 - 3.55i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.15 - 2.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.25T + 31T^{2} \) |
| 37 | \( 1 + (-2.65 - 1.53i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.75 + 6.50i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 - i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2.19iT - 47T^{2} \) |
| 53 | \( 1 - 0.906iT - 53T^{2} \) |
| 59 | \( 1 + (3.28 + 5.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.47 - 9.48i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.562 - 0.324i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.83 - 3.17i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2.60iT - 73T^{2} \) |
| 79 | \( 1 - 2.29T + 79T^{2} \) |
| 83 | \( 1 + 13.3iT - 83T^{2} \) |
| 89 | \( 1 + (-0.578 + 1.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (11.9 - 6.91i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.323993501889592846953116110550, −9.060598453531374084471021614729, −8.352723005319735394466887603452, −6.91283010555754377896117752794, −6.30151224055649842980903306102, −5.68364362979414437872077791606, −4.69572077280221642285657001322, −3.66162667830019186927955025217, −2.66725520716046905798863272234, −1.13018284177219097172737849359,
1.43572003858230751838165446505, 2.54183474361901471329931219955, 3.58683572696454769651684129206, 4.44954189109219354386742137450, 5.58529056168032504904259775224, 6.51448493652664556372057801343, 6.87894658417991603608810362643, 8.056423028044250580846652362948, 9.360172625346000330918728722654, 9.920090189338594125651186554185