L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.539 − 2.17i)5-s + (0.614 + 0.354i)7-s − 0.999i·8-s + (−0.618 − 2.14i)10-s + (−2.25 − 3.90i)11-s + (−3.35 − 1.30i)13-s + 0.709·14-s + (−0.5 − 0.866i)16-s + (−2.74 − 1.58i)17-s + (−0.0603 + 0.104i)19-s + (−1.60 − 1.55i)20-s + (−3.90 − 2.25i)22-s + (−4.30 + 2.48i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (0.241 − 0.970i)5-s + (0.232 + 0.134i)7-s − 0.353i·8-s + (−0.195 − 0.679i)10-s + (−0.679 − 1.17i)11-s + (−0.931 − 0.362i)13-s + 0.189·14-s + (−0.125 − 0.216i)16-s + (−0.665 − 0.384i)17-s + (−0.0138 + 0.0239i)19-s + (−0.359 − 0.347i)20-s + (−0.832 − 0.480i)22-s + (−0.897 + 0.518i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.764 + 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.764 + 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.873208414\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.873208414\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.539 + 2.17i)T \) |
| 13 | \( 1 + (3.35 + 1.30i)T \) |
good | 7 | \( 1 + (-0.614 - 0.354i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.25 + 3.90i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.74 + 1.58i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.0603 - 0.104i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.30 - 2.48i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.63 - 6.28i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 9.66T + 31T^{2} \) |
| 37 | \( 1 + (-6.02 + 3.47i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.223 - 0.387i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 + i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.70iT - 47T^{2} \) |
| 53 | \( 1 + 9.58iT - 53T^{2} \) |
| 59 | \( 1 + (-2.87 + 4.98i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.53 - 6.11i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.53 + 1.46i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.09 - 7.08i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6.74iT - 73T^{2} \) |
| 79 | \( 1 - 16.0T + 79T^{2} \) |
| 83 | \( 1 - 0.355iT - 83T^{2} \) |
| 89 | \( 1 + (1.81 + 3.14i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.84 + 3.95i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.630513608891252992089805124029, −8.538155710825457364244140350363, −8.051334328387407018102254679997, −6.80468586270953271130045424013, −5.74875834605989715297870264915, −5.15198126247419089605080876046, −4.38448356493505889017441137322, −3.12252371769163381144893109110, −2.11501578969457314615871916018, −0.61950168314985686670500324058,
2.16349248698896427236167823311, 2.78265838366730912576291209285, 4.31791173441951472181148459969, 4.73969891587132951234438348916, 6.12847850284352550756474964617, 6.59934655904060940361063650280, 7.61050848993973962290559057178, 8.034747915882018028922277550447, 9.490122967161491386411764922753, 10.13197629052358333545414496478