L(s) = 1 | + (0.433 − 0.751i)2-s + (0.753 + 1.55i)3-s + (0.623 + 1.08i)4-s + (−0.0324 + 0.0561i)5-s + (1.49 + 0.110i)6-s − 3.92·7-s + 2.81·8-s + (−1.86 + 2.35i)9-s + (0.0281 + 0.0486i)10-s + (2.64 − 4.58i)11-s + (−1.21 + 1.78i)12-s + (−0.188 − 3.60i)13-s + (−1.70 + 2.94i)14-s + (−0.111 − 0.00822i)15-s + (−0.0259 + 0.0449i)16-s + (2.28 − 3.95i)17-s + ⋯ |
L(s) = 1 | + (0.306 − 0.531i)2-s + (0.435 + 0.900i)3-s + (0.311 + 0.540i)4-s + (−0.0144 + 0.0251i)5-s + (0.611 + 0.0449i)6-s − 1.48·7-s + 0.995·8-s + (−0.621 + 0.783i)9-s + (0.00888 + 0.0153i)10-s + (0.797 − 1.38i)11-s + (−0.350 + 0.515i)12-s + (−0.0523 − 0.998i)13-s + (−0.454 + 0.787i)14-s + (−0.0289 − 0.00212i)15-s + (−0.00649 + 0.0112i)16-s + (0.553 − 0.958i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.341i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.341i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33288 + 0.234554i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33288 + 0.234554i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.753 - 1.55i)T \) |
| 13 | \( 1 + (0.188 + 3.60i)T \) |
good | 2 | \( 1 + (-0.433 + 0.751i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.0324 - 0.0561i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 3.92T + 7T^{2} \) |
| 11 | \( 1 + (-2.64 + 4.58i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.28 + 3.95i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.281 + 0.486i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.85T + 23T^{2} \) |
| 29 | \( 1 + (3.00 - 5.20i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.23 - 7.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.506 + 0.877i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.34T + 41T^{2} \) |
| 43 | \( 1 + 6.90T + 43T^{2} \) |
| 47 | \( 1 + (2.22 + 3.85i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 1.68T + 53T^{2} \) |
| 59 | \( 1 + (4.57 + 7.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 6.35T + 61T^{2} \) |
| 67 | \( 1 - 3.53T + 67T^{2} \) |
| 71 | \( 1 + (5.02 - 8.70i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.39T + 73T^{2} \) |
| 79 | \( 1 + (-5.67 - 9.83i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.87 + 3.24i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.00 + 3.47i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3.35T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.48617464387701748908860034552, −12.62964993851995954690986549617, −11.43880804164290092191350761015, −10.53982532418988689512585395754, −9.486095326190331984094842495985, −8.441852933714119890601465291058, −6.99122519952595647424397324723, −5.41996117903678236095664800257, −3.45642556681621400368505097166, −3.20277590611810074356932693255,
1.98334675072236804226431561628, 4.03311299288503483690237201078, 6.10413471646410645338016961905, 6.65181668382427841203561598550, 7.63935797706896552429434298781, 9.315524661305340827030021727651, 10.04632161741693265605931762564, 11.76792856040891599805945181645, 12.63963697920475667842904001030, 13.53949360345732216435778570222