L(s) = 1 | + (−0.348 + 0.604i)2-s + (1.58 − 0.690i)3-s + (0.756 + 1.31i)4-s + (1.44 − 2.50i)5-s + (−0.137 + 1.20i)6-s − 3.17·7-s − 2.45·8-s + (2.04 − 2.19i)9-s + (1.00 + 1.74i)10-s + (−1.15 + 2.00i)11-s + (2.10 + 1.56i)12-s + (0.0625 + 3.60i)13-s + (1.10 − 1.91i)14-s + (0.568 − 4.97i)15-s + (−0.658 + 1.14i)16-s + (2.69 − 4.66i)17-s + ⋯ |
L(s) = 1 | + (−0.246 + 0.427i)2-s + (0.917 − 0.398i)3-s + (0.378 + 0.655i)4-s + (0.646 − 1.11i)5-s + (−0.0560 + 0.490i)6-s − 1.19·7-s − 0.866·8-s + (0.682 − 0.730i)9-s + (0.318 + 0.552i)10-s + (−0.348 + 0.603i)11-s + (0.608 + 0.450i)12-s + (0.0173 + 0.999i)13-s + (0.295 − 0.512i)14-s + (0.146 − 1.28i)15-s + (−0.164 + 0.285i)16-s + (0.653 − 1.13i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24226 + 0.145013i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24226 + 0.145013i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.58 + 0.690i)T \) |
| 13 | \( 1 + (-0.0625 - 3.60i)T \) |
good | 2 | \( 1 + (0.348 - 0.604i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.44 + 2.50i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 3.17T + 7T^{2} \) |
| 11 | \( 1 + (1.15 - 2.00i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.69 + 4.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.58 - 4.48i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6.54T + 23T^{2} \) |
| 29 | \( 1 + (2.01 - 3.48i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.23 + 7.34i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.42 + 4.19i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.51T + 41T^{2} \) |
| 43 | \( 1 - 5.98T + 43T^{2} \) |
| 47 | \( 1 + (-0.521 - 0.902i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 1.29T + 53T^{2} \) |
| 59 | \( 1 + (-2.35 - 4.07i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 7.43T + 61T^{2} \) |
| 67 | \( 1 - 8.36T + 67T^{2} \) |
| 71 | \( 1 + (0.680 - 1.17i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.41T + 73T^{2} \) |
| 79 | \( 1 + (0.0365 + 0.0633i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.08 + 1.88i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.0891 + 0.154i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 0.130T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.43642101521820543699945340570, −12.61287798183247901644135490606, −12.07558565946831090667167853232, −9.766107675623918835674083560383, −9.287882609398140635557519894504, −8.174074344633497870865956365509, −7.13405073386642212742792243894, −6.00469387985743928490205132530, −3.93974676416283950122695365315, −2.29280565832374470147175838493,
2.47661041134812617400906153159, 3.35379003566676644401050250788, 5.80191443361525728467346675972, 6.71917175328271185030112959228, 8.319989975351187216212529314868, 9.707748105114677132221111546170, 10.24642831232279233951861184925, 10.85574865715042223582174017993, 12.61313607998642610040438751770, 13.65898664714798230900032874769