Properties

Label 2-117-117.94-c1-0-8
Degree $2$
Conductor $117$
Sign $0.973 - 0.230i$
Analytic cond. $0.934249$
Root an. cond. $0.966565$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.348 + 0.604i)2-s + (1.58 − 0.690i)3-s + (0.756 + 1.31i)4-s + (1.44 − 2.50i)5-s + (−0.137 + 1.20i)6-s − 3.17·7-s − 2.45·8-s + (2.04 − 2.19i)9-s + (1.00 + 1.74i)10-s + (−1.15 + 2.00i)11-s + (2.10 + 1.56i)12-s + (0.0625 + 3.60i)13-s + (1.10 − 1.91i)14-s + (0.568 − 4.97i)15-s + (−0.658 + 1.14i)16-s + (2.69 − 4.66i)17-s + ⋯
L(s)  = 1  + (−0.246 + 0.427i)2-s + (0.917 − 0.398i)3-s + (0.378 + 0.655i)4-s + (0.646 − 1.11i)5-s + (−0.0560 + 0.490i)6-s − 1.19·7-s − 0.866·8-s + (0.682 − 0.730i)9-s + (0.318 + 0.552i)10-s + (−0.348 + 0.603i)11-s + (0.608 + 0.450i)12-s + (0.0173 + 0.999i)13-s + (0.295 − 0.512i)14-s + (0.146 − 1.28i)15-s + (−0.164 + 0.285i)16-s + (0.653 − 1.13i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117\)    =    \(3^{2} \cdot 13\)
Sign: $0.973 - 0.230i$
Analytic conductor: \(0.934249\)
Root analytic conductor: \(0.966565\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{117} (94, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 117,\ (\ :1/2),\ 0.973 - 0.230i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.24226 + 0.145013i\)
\(L(\frac12)\) \(\approx\) \(1.24226 + 0.145013i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.58 + 0.690i)T \)
13 \( 1 + (-0.0625 - 3.60i)T \)
good2 \( 1 + (0.348 - 0.604i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + (-1.44 + 2.50i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + 3.17T + 7T^{2} \)
11 \( 1 + (1.15 - 2.00i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-2.69 + 4.66i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.58 - 4.48i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + 6.54T + 23T^{2} \)
29 \( 1 + (2.01 - 3.48i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-4.23 + 7.34i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.42 + 4.19i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 2.51T + 41T^{2} \)
43 \( 1 - 5.98T + 43T^{2} \)
47 \( 1 + (-0.521 - 0.902i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 1.29T + 53T^{2} \)
59 \( 1 + (-2.35 - 4.07i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 - 7.43T + 61T^{2} \)
67 \( 1 - 8.36T + 67T^{2} \)
71 \( 1 + (0.680 - 1.17i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 1.41T + 73T^{2} \)
79 \( 1 + (0.0365 + 0.0633i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (1.08 + 1.88i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (0.0891 + 0.154i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 0.130T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43642101521820543699945340570, −12.61287798183247901644135490606, −12.07558565946831090667167853232, −9.766107675623918835674083560383, −9.287882609398140635557519894504, −8.174074344633497870865956365509, −7.13405073386642212742792243894, −6.00469387985743928490205132530, −3.93974676416283950122695365315, −2.29280565832374470147175838493, 2.47661041134812617400906153159, 3.35379003566676644401050250788, 5.80191443361525728467346675972, 6.71917175328271185030112959228, 8.319989975351187216212529314868, 9.707748105114677132221111546170, 10.24642831232279233951861184925, 10.85574865715042223582174017993, 12.61313607998642610040438751770, 13.65898664714798230900032874769

Graph of the $Z$-function along the critical line