L(s) = 1 | + (−0.567 − 0.983i)2-s + (−0.529 − 1.64i)3-s + (0.354 − 0.614i)4-s + (−0.0587 − 0.101i)5-s + (−1.32 + 1.45i)6-s + 0.849·7-s − 3.07·8-s + (−2.43 + 1.74i)9-s + (−0.0667 + 0.115i)10-s + (0.231 + 0.401i)11-s + (−1.20 − 0.259i)12-s + (1.54 − 3.25i)13-s + (−0.482 − 0.835i)14-s + (−0.136 + 0.150i)15-s + (1.03 + 1.79i)16-s + (−1.26 − 2.18i)17-s + ⋯ |
L(s) = 1 | + (−0.401 − 0.695i)2-s + (−0.305 − 0.952i)3-s + (0.177 − 0.307i)4-s + (−0.0262 − 0.0454i)5-s + (−0.539 + 0.595i)6-s + 0.321·7-s − 1.08·8-s + (−0.813 + 0.582i)9-s + (−0.0210 + 0.0365i)10-s + (0.0699 + 0.121i)11-s + (−0.346 − 0.0749i)12-s + (0.427 − 0.903i)13-s + (−0.128 − 0.223i)14-s + (−0.0352 + 0.0389i)15-s + (0.259 + 0.449i)16-s + (−0.306 − 0.530i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.708 + 0.706i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.708 + 0.706i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.309932 - 0.749675i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.309932 - 0.749675i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.529 + 1.64i)T \) |
| 13 | \( 1 + (-1.54 + 3.25i)T \) |
good | 2 | \( 1 + (0.567 + 0.983i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.0587 + 0.101i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 0.849T + 7T^{2} \) |
| 11 | \( 1 + (-0.231 - 0.401i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.26 + 2.18i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.09 - 5.35i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 6.65T + 23T^{2} \) |
| 29 | \( 1 + (0.952 + 1.64i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.657 - 1.13i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.01 - 3.48i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9.68T + 41T^{2} \) |
| 43 | \( 1 + 4.20T + 43T^{2} \) |
| 47 | \( 1 + (-1.34 + 2.33i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 0.389T + 53T^{2} \) |
| 59 | \( 1 + (5.53 - 9.58i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 7.76T + 61T^{2} \) |
| 67 | \( 1 + 1.02T + 67T^{2} \) |
| 71 | \( 1 + (-3.61 - 6.25i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 3.31T + 73T^{2} \) |
| 79 | \( 1 + (4.41 - 7.64i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.75 + 3.04i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (6.62 - 11.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 15.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.85584412866220725730857877945, −11.99034568874310555469036635849, −11.13966605491124937877786430787, −10.26550085105633411757407983506, −8.900815151425785073921589684991, −7.74424268227618969438017825339, −6.42826779536506570856092290412, −5.31486929170476192376201013789, −2.85133477626061990091243335229, −1.18485209533362802415571065924,
3.25703540749123049062106340358, 4.81716467107423941203225762731, 6.22278224490399775763056534334, 7.32551636632228325904099187167, 8.812676975038615818993178074839, 9.289964140726441735943400669077, 11.00328817151713506194802731534, 11.47244929267208526115123465421, 12.85295003634411925583082825652, 14.29460139467314303050378507910